|
|
Publications in Math-Net.Ru
-
Subspaces dimensional properties that are boundary sets of the probability measures space, defined in an infinite compactum $X$
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 89, 32–50
-
On euclidean manifolds being a subspace of the space of probability measures with finite supports to a certain infinite compact set of dimension zero
Vestnik SamU. Estestvenno-Nauchnaya Ser., 29:3 (2023), 31–36
-
Equivariant properties of the space $ {\mathbb Z} (X) $ for a stratifiable space $ X $
Vestnik SamU. Estestvenno-Nauchnaya Ser., 29:2 (2023), 40–47
-
Geometric properties of the location of subspaces of the space of probability measures
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 197 (2021), 12–27
-
Covariant functors and shapes in the category of compacts
CMFD, 65:1 (2019), 21–32
-
On Projectively Inductively Closed Subfunctors of the Functor $P$ of Probability Measures
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 144 (2018), 88–95
-
Some values subfunctors of functor probalities measures in the categories Comp
Vestnik SamU. Estestvenno-Nauchnaya Ser., 24:2 (2018), 28–32
-
Shape properties of the space of probability measures and its subspaces
Vestnik SamU. Estestvenno-Nauchnaya Ser., 24:2 (2018), 24–27
-
Normal functors and the metrizability of compact Hausdorff spaces
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 4, 8–11
-
The functor $\lambda$ and the metrizability of compact Hausdorff spaces
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1999, no. 4, 54–56
-
The functor $P$ of probability measures
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1990, no. 1, 26–30
-
Some fundamental properties of the functor $P_f$
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1989, no. 6, 29–33
© , 2024