RUS  ENG
Full version
PEOPLE

Zhuraev Tursunboy Fayzievich

Publications in Math-Net.Ru

  1. Subspaces dimensional properties that are boundary sets of the probability measures space, defined in an infinite compactum $X$

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 89,  32–50
  2. On euclidean manifolds being a subspace of the space of probability measures with finite supports to a certain infinite compact set of dimension zero

    Vestnik SamU. Estestvenno-Nauchnaya Ser., 29:3 (2023),  31–36
  3. Equivariant properties of the space $ {\mathbb Z} (X) $ for a stratifiable space $ X $

    Vestnik SamU. Estestvenno-Nauchnaya Ser., 29:2 (2023),  40–47
  4. Geometric properties of the location of subspaces of the space of probability measures

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 197 (2021),  12–27
  5. Covariant functors and shapes in the category of compacts

    CMFD, 65:1 (2019),  21–32
  6. On Projectively Inductively Closed Subfunctors of the Functor $P$ of Probability Measures

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 144 (2018),  88–95
  7. Some values subfunctors of functor probalities measures in the categories Comp

    Vestnik SamU. Estestvenno-Nauchnaya Ser., 24:2 (2018),  28–32
  8. Shape properties of the space of probability measures and its subspaces

    Vestnik SamU. Estestvenno-Nauchnaya Ser., 24:2 (2018),  24–27
  9. Normal functors and the metrizability of compact Hausdorff spaces

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 4,  8–11
  10. The functor $\lambda$ and the metrizability of compact Hausdorff spaces

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1999, no. 4,  54–56
  11. The functor $P$ of probability measures

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1990, no. 1,  26–30
  12. Some fundamental properties of the functor $P_f$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1989, no. 6,  29–33


© Steklov Math. Inst. of RAS, 2024