RUS  ENG
Full version
PEOPLE

Karpushkin Vladimir Nikolaevich

Publications in Math-Net.Ru

  1. Four theorems on uniform estimates of oscillatory integrals

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 3,  56–60
  2. Some Phases of Oscillatory Integrals

    Funktsional. Anal. i Prilozhen., 45:2 (2011),  91–93
  3. The number of connected components of a level surface of a harmonic polynomial

    Uspekhi Mat. Nauk, 65:4(394) (2010),  197–198
  4. On the Asymptotic Distribution of the Spectrum of an Operator over Irreducible Representations of Its Symmetry Group

    Funktsional. Anal. i Prilozhen., 40:3 (2006),  72–75
  5. Estimates of sums of zero multiplicities for eigenfunctions of the Laplace–Beltrami operator

    Fundam. Prikl. Mat., 11:5 (2005),  85–90
  6. Uniform Estimates for Oscillatory Integrals and Volumes with the Varchenko Phase

    Mat. Zametki, 72:5 (2002),  688–692
  7. On the number of components in the complement of certain algebraic curves

    Uspekhi Mat. Nauk, 57:6(348) (2002),  185–186
  8. Number of Components in the Complement to a Level Surface of a Partially Parabolic Polynomial

    Mat. Zametki, 69:5 (2001),  798–800
  9. Uniform estimates of oscillatory integrals with phase from the series $\widetilde R_m$

    Mat. Zametki, 64:3 (1998),  468–469
  10. Uniform Estimates of Volumes

    Trudy Mat. Inst. Steklova, 221 (1998),  225–231
  11. Projectivization of zeros of parabolic polynomials

    Dokl. Akad. Nauk, 352:3 (1997),  307–308
  12. The number of components of complements to level surfaces of partially harmonic polynomials

    Mat. Zametki, 62:6 (1997),  831–835
  13. Multiplicities of Singularities of Eigenfunctions for the Laplace–Beltrami Operator

    Funktsional. Anal. i Prilozhen., 29:1 (1995),  80–82
  14. On asymptotic decomposition of oscillating integrals with semi-quasi-homogeneous phase

    Mat. Zametki, 57:3 (1995),  471–473
  15. On the topology of zeros of parabolic polynomials

    Dokl. Akad. Nauk, 337:4 (1994),  437–438
  16. The Number of Components of the Complement of the Level Surface of a Harmonic Polynomial in Three Variables

    Funktsional. Anal. i Prilozhen., 28:2 (1994),  52–54
  17. Dominant term in the asymptotics of oscillatory integrals with a phase of the series $T$

    Mat. Zametki, 56:6 (1994),  131–133
  18. Bounds for Homology Groups of Some Manifolds

    Funktsional. Anal. i Prilozhen., 27:2 (1993),  86–87
  19. Bounds for the Betti numbers of a level surface of a harmonic polynomial

    Funktsional. Anal. i Prilozhen., 26:4 (1992),  86–88
  20. Oscillatory integrals and volumes with semiquasi-homogeneous phase

    Funktsional. Anal. i Prilozhen., 26:1 (1992),  59–61
  21. Topology of the zeros of eigenfunctions

    Funktsional. Anal. i Prilozhen., 23:3 (1989),  59–60
  22. The dependence of uniform estimates of oscillating integrals on the amplitude

    Uspekhi Mat. Nauk, 44:5(269) (1989),  163–164
  23. Uniform estimates of some oscillating integrals

    Sibirsk. Mat. Zh., 30:2 (1989),  90–101
  24. More precise uniform estimates of oscillatory integrals and areas

    Uspekhi Mat. Nauk, 43:5(263) (1988),  197–198
  25. Precise order bounds for the number of components of the complement of the zeros of harmonic polynomials

    Funktsional. Anal. i Prilozhen., 19:4 (1985),  55–60
  26. Uniform estimates of oscillating integrals in $R^2$

    Dokl. Akad. Nauk SSSR, 254:1 (1980),  28–31


© Steklov Math. Inst. of RAS, 2024