|
|
Publications in Math-Net.Ru
-
Killing Weights from the Perspective of $t$-Structures
Trudy Mat. Inst. Steklova, 320 (2023), 59–70
-
Higher criteria for the regularity of a one-dimensional local field
Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9:2 (2022), 229–244
-
Lubin–Tate extensions and Carlitz module over a projective line: an explicit connection
Chebyshevskii Sb., 22:2 (2021), 90–103
-
The structure of formal modules as Galois modules in cyclic unramified $p$-extensions
Zap. Nauchn. Sem. POMI, 500 (2021), 37–50
-
Lubin–Tate formal modules over higher local fields
Zap. Nauchn. Sem. POMI, 500 (2021), 30–36
-
Inaba extension of complete field of characteristic $0$
Chebyshevskii Sb., 21:3 (2020), 59–67
-
Schnirelmann's integral and analogy of Cauchy integral theorem for two-dimensional local fields
Chebyshevskii Sb., 21:3 (2020), 39–58
-
The hearts of weight structures are the weakly idempotent complete categories
Chebyshevskii Sb., 21:3 (2020), 29–38
-
The Hensel–Shafarevich canonical basis in Honda formal modules
Chebyshevskii Sb., 21:1 (2020), 368–373
-
Torsion points of generalized Honda formal groups
Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7:4 (2020), 597–606
-
Regular formal modules in local fields and irregularly degree
Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7:4 (2020), 588–596
-
Calculations in generalised lubin - Tate theory
Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7:2 (2020), 210–216
-
Kurihara invariants and elimination of wild ramification
Zap. Nauchn. Sem. POMI, 492 (2020), 25–44
-
Inaba extension of complete field of characteristic $0$
Chebyshevskii Sb., 20:3 (2019), 124–133
-
On two approaches to classification of higher local fields
Chebyshevskii Sb., 20:2 (2019), 186–197
-
Cohomology of Formal Modules over Local Fields
Mat. Zametki, 105:1 (2019), 3–8
-
Number theory and applications in cryptography
Chebyshevskii Sb., 19:3 (2018), 61–73
-
Universal Approach to the Arithmetics of Formal Groups
Mat. Zametki, 104:2 (2018), 183–190
-
Asymmetric ID-based encryption system, using an explicit pairing function of the reciprocity law
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2016, no. 2, 40–44
-
Explicit form of the Hilbert symbol on polynomial formal module for multidimensional local field. II
Zap. Nauchn. Sem. POMI, 443 (2016), 46–60
-
The arithmetic of the Lubin–Tate formal module in a multidimensional complete field
Algebra i Analiz, 26:6 (2014), 1–9
-
Explicit formula for Hilbert pairing on polynomial formal modules
Algebra i Analiz, 26:5 (2014), 125–141
-
Lubin–Tate formal module in a cyclic unramified $p$-extension as Galois module
Zap. Nauchn. Sem. POMI, 430 (2014), 61–66
-
Explicit form of Hilbert symbol for polynomial formal groups over multidimensional local field. I
Zap. Nauchn. Sem. POMI, 430 (2014), 53–60
-
Classification of formal $A$-modules in the case of small ramification
Zap. Nauchn. Sem. POMI, 430 (2014), 5–12
-
Shafarevich's paper “A general reciprocity law”
Mat. Sb., 204:6 (2013), 3–22
-
Primary Elements in Formal Modules
Sovrem. Probl. Mat., 17 (2013), 153–163
-
Cauchy's integral theorem and classical reciprocity law
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:2 (2012), 73–82
-
The Hilbert symbol of a polynomial formal group
Zap. Nauchn. Sem. POMI, 400 (2012), 127–132
-
The Hilbert symbol in multi-dimensional local fields for Lubin–Tate formal groups
Zap. Nauchn. Sem. POMI, 400 (2012), 20–49
-
Canonical basis of Hensel–Shafarevich in complete discrete valuation fields
Zap. Nauchn. Sem. POMI, 394 (2011), 174–193
-
Eisenstein's reciprocity law for Lubin–Tate formal groups
Zap. Nauchn. Sem. POMI, 386 (2011), 129–143
-
On a paper by Hasse concerning Eisenstein reciprocity law
Zap. Nauchn. Sem. POMI, 365 (2009), 122–129
-
The classical reciprocity law for power residues as an analog of the Abelian integral theorem
Algebra i Analiz, 20:6 (2008), 108–118
-
Variations on the theme of D. K. Faddeev's paper “An explicit form of the Kummer–Takagi reciprocity law”
Algebra i Analiz, 19:5 (2007), 65–69
-
Arithmetic of the module of roots of the isogeny of a formal group in the case of small ramification
Zap. Nauchn. Sem. POMI, 338 (2006), 125–136
-
Distinguished isogenies for formal groups in local fields with small ramification
Zap. Nauchn. Sem. POMI, 330 (2006), 93–100
-
Restriction of the scalars for formal groups
Zap. Nauchn. Sem. POMI, 319 (2004), 59–70
-
The Hilbert pairing for formal groups over $\sigma$-rings
Zap. Nauchn. Sem. POMI, 319 (2004), 5–58
-
An explicit formula for the Hilbert symbol for Honda
groups in a multidimensional local field
Mat. Sb., 194:2 (2003), 3–36
-
An Explicit Classification of Formal Groups over Local Fields
Trudy Mat. Inst. Steklova, 241 (2003), 43–67
-
Norm series in multidimensional local fields
Zap. Nauchn. Sem. POMI, 305 (2003), 60–83
-
Norm series for the Lubin–Tate formal groups
Zap. Nauchn. Sem. POMI, 281 (2001), 105–127
-
Hilbert symbol in a complete multidimensional field for an arbitrary prime number. Part I
Zap. Nauchn. Sem. POMI, 281 (2001), 5–34
-
The explicit formula of the Hilbert symbol for Honda formal groups
Zap. Nauchn. Sem. POMI, 272 (2000), 86–128
-
Additive Galois modules in Dedekind rings. Decomposability
Algebra i Analiz, 11:6 (1999), 103–121
-
Explicit pairing and class field theory of multidimensional complete fields
Algebra i Analiz, 11:4 (1999), 95–114
-
Decomposability of ideals as Galois modules in complete discrete valuation fields
Algebra i Analiz, 11:2 (1999), 41–63
-
Extensions with almost maximal depth of ramification
Zap. Nauchn. Sem. POMI, 265 (1999), 77–109
-
Shafarevich bases in topological $K$-groups
Algebra i Analiz, 10:2 (1998), 63–80
-
Additive Galois modules in complete discrete valuation fields
Algebra i Analiz, 9:4 (1997), 28–46
-
The numbers of representations of elements of $GF(p)$ as sums of $l$th degrees
Zap. Nauchn. Sem. POMI, 236 (1997), 68–72
-
A decomposition of ideals in an Abelian $p$-extension of complete discretely valuated fields.
Zap. Nauchn. Sem. POMI, 236 (1997), 23–33
-
Hilbert pairing on a complete high-dimensional field
Trudy Mat. Inst. Steklov., 208 (1995), 80–92
-
A relationship between the Hilbert and Witt symbols
Zap. Nauchn. Sem. POMI, 227 (1995), 45–51
-
An explicit form of the Hilbert pairing for the relative formal Lubin–Tate groups
Zap. Nauchn. Sem. POMI, 227 (1995), 41–44
-
The seminar “Constructive Class Field Theory”
Algebra i Analiz, 4:1 (1992), 177–193
-
Galois modules in multidimensional local field
Zap. Nauchn. Sem. LOMI, 198 (1991), 5–14
-
Arithmetic of group of points of formal group
Zap. Nauchn. Sem. LOMI, 191 (1991), 9–23
-
Norm pairing in formal groups and Galois representations
Algebra i Analiz, 2:6 (1990), 69–97
-
On the theory of multidimensional local fields. Methods and constructions
Algebra i Analiz, 2:4 (1990), 91–118
-
An elementary abelian $p$-extension of a multidimensional local field
Trudy Mat. Inst. Steklov., 183 (1990), 50–60
-
On the norm property of the Gilbert's pairing
Zap. Nauchn. Sem. LOMI, 175 (1989), 30–45
-
A certain property of the Hilbert pairing
Mat. Zametki, 43:3 (1988), 393–400
-
Lutz filtration as Galois module in an extension without higher ramification
Zap. Nauchn. Sem. LOMI, 160 (1987), 182–192
-
Explicit construction of class field theory for a multidimensional local field
Izv. Akad. Nauk SSSR Ser. Mat., 49:2 (1985), 283–308
-
On the theory of class fields of a multidimensional local field
Dokl. Akad. Nauk SSSR, 274:4 (1984), 780–782
-
Hilbert symbol for Lubin–Tate formal groups. II
Zap. Nauchn. Sem. LOMI, 132 (1983), 85–96
-
Horm pairing in the two-dimensional local field
Zap. Nauchn. Sem. LOMI, 132 (1983), 76–84
-
The Hilbert symbol for Lubin–Tate formal groups. I
Zap. Nauchn. Sem. LOMI, 114 (1982), 77–95
-
Symbols on formal groups
Izv. Akad. Nauk SSSR Ser. Mat., 45:5 (1981), 985–1014
-
The Hilbert symbol in an extension of the 2-adic field
Zap. Nauchn. Sem. LOMI, 103 (1980), 58–61
-
The canonical decomposition in the group of points of a formal group
Zap. Nauchn. Sem. LOMI, 103 (1980), 52–57
-
A norm pairing in formal modules
Izv. Akad. Nauk SSSR Ser. Mat., 43:4 (1979), 765–794
-
Hilbert symbol in a discrete valuated field
Zap. Nauchn. Sem. LOMI, 94 (1979), 50–69
-
An explicit pairing formula in formal modules
Dokl. Akad. Nauk SSSR, 241:2 (1978), 275–278
-
On an explicit form of the reciprocity law
Dokl. Akad. Nauk SSSR, 238:6 (1978), 1276–1278
-
Explicit form of the law of reciprocity
Izv. Akad. Nauk SSSR Ser. Mat., 42:6 (1978), 1288–1321
-
The reciprocity law in an algebraic number field
Trudy Mat. Inst. Steklov., 148 (1978), 77–81
-
The second factor in the reciprocity law
Zap. Nauchn. Sem. LOMI, 75 (1978), 59–66
-
The ring of integers in an abelian extention of an algebraic number field as a Galois module
Zap. Nauchn. Sem. LOMI, 71 (1977), 80–84
-
Normal basis for an ideal in a local ring
Zap. Nauchn. Sem. LOMI, 64 (1976), 64–68
-
Ideals of an abelian $p$-extension of local fields as Galois modules
Zap. Nauchn. Sem. LOMI, 57 (1976), 64–84
-
Ideals of the abelian irregular $p$-extensien of local field as Galois modules
Zap. Nauchn. Sem. LOMI, 46 (1974), 14–35
-
An orthogonal basis of a local field
Izv. Akad. Nauk SSSR Ser. Mat., 37:6 (1973), 1228–1240
-
Ring of integers in an extension of prime degree of a local field as the Galois module
Zap. Nauchn. Sem. LOMI, 31 (1973), 24–37
-
Alexey Nikolaevich Parshin (obituary)
Uspekhi Mat. Nauk, 78:3(471) (2023), 165–169
-
Anatoly Vladimirovich Yakovlev
Zap. Nauchn. Sem. POMI, 513 (2022), 5–8
-
Evgeny Vladimirovich Podsypanin
Chebyshevskii Sb., 21:4 (2020), 425–426
-
Boris Beniaminovich Lur'e
Chebyshevskii Sb., 21:3 (2020), 6–9
-
80 anniversary of Professor Anatolii Vladimirovich Yakovlev
Zap. Nauchn. Sem. POMI, 492 (2020), 5–9
-
Aleksei Nikolaevich Parshin (on his 70th birthday)
Uspekhi Mat. Nauk, 68:1(409) (2013), 201–207
-
Harmony in algebra (on the centenary of the birth of Dmitriĭ Konstantinovich Faddeev, Corresponding Member of the Academy of Sciences of the USSR)
Vladikavkaz. Mat. Zh., 10:1 (2008), 3–9
-
Celebration of Leonhard Euler's 300th birthday
Uspekhi Mat. Nauk, 62:4(376) (2007), 186–189
-
Anatolii Vladimirovich Yakovlev
Zap. Nauchn. Sem. POMI, 272 (2000), 5–13
© , 2024