RUS  ENG
Full version
PEOPLE

Vostokov Sergei Vladimirovich

Publications in Math-Net.Ru

  1. Killing Weights from the Perspective of $t$-Structures

    Trudy Mat. Inst. Steklova, 320 (2023),  59–70
  2. Higher criteria for the regularity of a one-dimensional local field

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9:2 (2022),  229–244
  3. Lubin–Tate extensions and Carlitz module over a projective line: an explicit connection

    Chebyshevskii Sb., 22:2 (2021),  90–103
  4. The structure of formal modules as Galois modules in cyclic unramified $p$-extensions

    Zap. Nauchn. Sem. POMI, 500 (2021),  37–50
  5. Lubin–Tate formal modules over higher local fields

    Zap. Nauchn. Sem. POMI, 500 (2021),  30–36
  6. Inaba extension of complete field of characteristic $0$

    Chebyshevskii Sb., 21:3 (2020),  59–67
  7. Schnirelmann's integral and analogy of Cauchy integral theorem for two-dimensional local fields

    Chebyshevskii Sb., 21:3 (2020),  39–58
  8. The hearts of weight structures are the weakly idempotent complete categories

    Chebyshevskii Sb., 21:3 (2020),  29–38
  9. The Hensel–Shafarevich canonical basis in Honda formal modules

    Chebyshevskii Sb., 21:1 (2020),  368–373
  10. Torsion points of generalized Honda formal groups

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7:4 (2020),  597–606
  11. Regular formal modules in local fields and irregularly degree

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7:4 (2020),  588–596
  12. Calculations in generalised lubin - Tate theory

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7:2 (2020),  210–216
  13. Kurihara invariants and elimination of wild ramification

    Zap. Nauchn. Sem. POMI, 492 (2020),  25–44
  14. Inaba extension of complete field of characteristic $0$

    Chebyshevskii Sb., 20:3 (2019),  124–133
  15. On two approaches to classification of higher local fields

    Chebyshevskii Sb., 20:2 (2019),  186–197
  16. Cohomology of Formal Modules over Local Fields

    Mat. Zametki, 105:1 (2019),  3–8
  17. Number theory and applications in cryptography

    Chebyshevskii Sb., 19:3 (2018),  61–73
  18. Universal Approach to the Arithmetics of Formal Groups

    Mat. Zametki, 104:2 (2018),  183–190
  19. Asymmetric ID-based encryption system, using an explicit pairing function of the reciprocity law

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2016, no. 2,  40–44
  20. Explicit form of the Hilbert symbol on polynomial formal module for multidimensional local field. II

    Zap. Nauchn. Sem. POMI, 443 (2016),  46–60
  21. The arithmetic of the Lubin–Tate formal module in a multidimensional complete field

    Algebra i Analiz, 26:6 (2014),  1–9
  22. Explicit formula for Hilbert pairing on polynomial formal modules

    Algebra i Analiz, 26:5 (2014),  125–141
  23. Lubin–Tate formal module in a cyclic unramified $p$-extension as Galois module

    Zap. Nauchn. Sem. POMI, 430 (2014),  61–66
  24. Explicit form of Hilbert symbol for polynomial formal groups over multidimensional local field. I

    Zap. Nauchn. Sem. POMI, 430 (2014),  53–60
  25. Classification of formal $A$-modules in the case of small ramification

    Zap. Nauchn. Sem. POMI, 430 (2014),  5–12
  26. Shafarevich's paper “A general reciprocity law”

    Mat. Sb., 204:6 (2013),  3–22
  27. Primary Elements in Formal Modules

    Sovrem. Probl. Mat., 17 (2013),  153–163
  28. Cauchy's integral theorem and classical reciprocity law

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:2 (2012),  73–82
  29. The Hilbert symbol of a polynomial formal group

    Zap. Nauchn. Sem. POMI, 400 (2012),  127–132
  30. The Hilbert symbol in multi-dimensional local fields for Lubin–Tate formal groups

    Zap. Nauchn. Sem. POMI, 400 (2012),  20–49
  31. Canonical basis of Hensel–Shafarevich in complete discrete valuation fields

    Zap. Nauchn. Sem. POMI, 394 (2011),  174–193
  32. Eisenstein's reciprocity law for Lubin–Tate formal groups

    Zap. Nauchn. Sem. POMI, 386 (2011),  129–143
  33. On a paper by Hasse concerning Eisenstein reciprocity law

    Zap. Nauchn. Sem. POMI, 365 (2009),  122–129
  34. The classical reciprocity law for power residues as an analog of the Abelian integral theorem

    Algebra i Analiz, 20:6 (2008),  108–118
  35. Variations on the theme of D. K. Faddeev's paper “An explicit form of the Kummer–Takagi reciprocity law”

    Algebra i Analiz, 19:5 (2007),  65–69
  36. Arithmetic of the module of roots of the isogeny of a formal group in the case of small ramification

    Zap. Nauchn. Sem. POMI, 338 (2006),  125–136
  37. Distinguished isogenies for formal groups in local fields with small ramification

    Zap. Nauchn. Sem. POMI, 330 (2006),  93–100
  38. Restriction of the scalars for formal groups

    Zap. Nauchn. Sem. POMI, 319 (2004),  59–70
  39. The Hilbert pairing for formal groups over $\sigma$-rings

    Zap. Nauchn. Sem. POMI, 319 (2004),  5–58
  40. An explicit formula for the Hilbert symbol for Honda groups in a multidimensional local field

    Mat. Sb., 194:2 (2003),  3–36
  41. An Explicit Classification of Formal Groups over Local Fields

    Trudy Mat. Inst. Steklova, 241 (2003),  43–67
  42. Norm series in multidimensional local fields

    Zap. Nauchn. Sem. POMI, 305 (2003),  60–83
  43. Norm series for the Lubin–Tate formal groups

    Zap. Nauchn. Sem. POMI, 281 (2001),  105–127
  44. Hilbert symbol in a complete multidimensional field for an arbitrary prime number. Part I

    Zap. Nauchn. Sem. POMI, 281 (2001),  5–34
  45. The explicit formula of the Hilbert symbol for Honda formal groups

    Zap. Nauchn. Sem. POMI, 272 (2000),  86–128
  46. Additive Galois modules in Dedekind rings. Decomposability

    Algebra i Analiz, 11:6 (1999),  103–121
  47. Explicit pairing and class field theory of multidimensional complete fields

    Algebra i Analiz, 11:4 (1999),  95–114
  48. Decomposability of ideals as Galois modules in complete discrete valuation fields

    Algebra i Analiz, 11:2 (1999),  41–63
  49. Extensions with almost maximal depth of ramification

    Zap. Nauchn. Sem. POMI, 265 (1999),  77–109
  50. Shafarevich bases in topological $K$-groups

    Algebra i Analiz, 10:2 (1998),  63–80
  51. Additive Galois modules in complete discrete valuation fields

    Algebra i Analiz, 9:4 (1997),  28–46
  52. The numbers of representations of elements of $GF(p)$ as sums of $l$th degrees

    Zap. Nauchn. Sem. POMI, 236 (1997),  68–72
  53. A decomposition of ideals in an Abelian $p$-extension of complete discretely valuated fields.

    Zap. Nauchn. Sem. POMI, 236 (1997),  23–33
  54. Hilbert pairing on a complete high-dimensional field

    Trudy Mat. Inst. Steklov., 208 (1995),  80–92
  55. A relationship between the Hilbert and Witt symbols

    Zap. Nauchn. Sem. POMI, 227 (1995),  45–51
  56. An explicit form of the Hilbert pairing for the relative formal Lubin–Tate groups

    Zap. Nauchn. Sem. POMI, 227 (1995),  41–44
  57. The seminar “Constructive Class Field Theory”

    Algebra i Analiz, 4:1 (1992),  177–193
  58. Galois modules in multidimensional local field

    Zap. Nauchn. Sem. LOMI, 198 (1991),  5–14
  59. Arithmetic of group of points of formal group

    Zap. Nauchn. Sem. LOMI, 191 (1991),  9–23
  60. Norm pairing in formal groups and Galois representations

    Algebra i Analiz, 2:6 (1990),  69–97
  61. On the theory of multidimensional local fields. Methods and constructions

    Algebra i Analiz, 2:4 (1990),  91–118
  62. An elementary abelian $p$-extension of a multidimensional local field

    Trudy Mat. Inst. Steklov., 183 (1990),  50–60
  63. On the norm property of the Gilbert's pairing

    Zap. Nauchn. Sem. LOMI, 175 (1989),  30–45
  64. A certain property of the Hilbert pairing

    Mat. Zametki, 43:3 (1988),  393–400
  65. Lutz filtration as Galois module in an extension without higher ramification

    Zap. Nauchn. Sem. LOMI, 160 (1987),  182–192
  66. Explicit construction of class field theory for a multidimensional local field

    Izv. Akad. Nauk SSSR Ser. Mat., 49:2 (1985),  283–308
  67. On the theory of class fields of a multidimensional local field

    Dokl. Akad. Nauk SSSR, 274:4 (1984),  780–782
  68. Hilbert symbol for Lubin–Tate formal groups. II

    Zap. Nauchn. Sem. LOMI, 132 (1983),  85–96
  69. Horm pairing in the two-dimensional local field

    Zap. Nauchn. Sem. LOMI, 132 (1983),  76–84
  70. The Hilbert symbol for Lubin–Tate formal groups. I

    Zap. Nauchn. Sem. LOMI, 114 (1982),  77–95
  71. Symbols on formal groups

    Izv. Akad. Nauk SSSR Ser. Mat., 45:5 (1981),  985–1014
  72. The Hilbert symbol in an extension of the 2-adic field

    Zap. Nauchn. Sem. LOMI, 103 (1980),  58–61
  73. The canonical decomposition in the group of points of a formal group

    Zap. Nauchn. Sem. LOMI, 103 (1980),  52–57
  74. A norm pairing in formal modules

    Izv. Akad. Nauk SSSR Ser. Mat., 43:4 (1979),  765–794
  75. Hilbert symbol in a discrete valuated field

    Zap. Nauchn. Sem. LOMI, 94 (1979),  50–69
  76. An explicit pairing formula in formal modules

    Dokl. Akad. Nauk SSSR, 241:2 (1978),  275–278
  77. On an explicit form of the reciprocity law

    Dokl. Akad. Nauk SSSR, 238:6 (1978),  1276–1278
  78. Explicit form of the law of reciprocity

    Izv. Akad. Nauk SSSR Ser. Mat., 42:6 (1978),  1288–1321
  79. The reciprocity law in an algebraic number field

    Trudy Mat. Inst. Steklov., 148 (1978),  77–81
  80. The second factor in the reciprocity law

    Zap. Nauchn. Sem. LOMI, 75 (1978),  59–66
  81. The ring of integers in an abelian extention of an algebraic number field as a Galois module

    Zap. Nauchn. Sem. LOMI, 71 (1977),  80–84
  82. Normal basis for an ideal in a local ring

    Zap. Nauchn. Sem. LOMI, 64 (1976),  64–68
  83. Ideals of an abelian $p$-extension of local fields as Galois modules

    Zap. Nauchn. Sem. LOMI, 57 (1976),  64–84
  84. Ideals of the abelian irregular $p$-extensien of local field as Galois modules

    Zap. Nauchn. Sem. LOMI, 46 (1974),  14–35
  85. An orthogonal basis of a local field

    Izv. Akad. Nauk SSSR Ser. Mat., 37:6 (1973),  1228–1240
  86. Ring of integers in an extension of prime degree of a local field as the Galois module

    Zap. Nauchn. Sem. LOMI, 31 (1973),  24–37

  87. Alexey Nikolaevich Parshin (obituary)

    Uspekhi Mat. Nauk, 78:3(471) (2023),  165–169
  88. Anatoly Vladimirovich Yakovlev

    Zap. Nauchn. Sem. POMI, 513 (2022),  5–8
  89. Evgeny Vladimirovich Podsypanin

    Chebyshevskii Sb., 21:4 (2020),  425–426
  90. Boris Beniaminovich Lur'e

    Chebyshevskii Sb., 21:3 (2020),  6–9
  91. 80 anniversary of Professor Anatolii Vladimirovich Yakovlev

    Zap. Nauchn. Sem. POMI, 492 (2020),  5–9
  92. Aleksei Nikolaevich Parshin (on his 70th birthday)

    Uspekhi Mat. Nauk, 68:1(409) (2013),  201–207
  93. Harmony in algebra (on the centenary of the birth of Dmitriĭ Konstantinovich Faddeev, Corresponding Member of the Academy of Sciences of the USSR)

    Vladikavkaz. Mat. Zh., 10:1 (2008),  3–9
  94. Celebration of Leonhard Euler's 300th birthday

    Uspekhi Mat. Nauk, 62:4(376) (2007),  186–189
  95. Anatolii Vladimirovich Yakovlev

    Zap. Nauchn. Sem. POMI, 272 (2000),  5–13


© Steklov Math. Inst. of RAS, 2024