RUS  ENG
Full version
PEOPLE

Kerefov Marat Aslanbievich

Publications in Math-Net.Ru

  1. On the question of the existence of a solution to the first boundary value problem for the Aller – Lykov moisture transfer equation with the operator of fractional discretely distributed differentiation

    Adyghe Int. Sci. J., 24:1 (2024),  11–22
  2. First boundary-value problem for the Aller–Lykov equation with the Caputo fractional derivative

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 221 (2023),  63–70
  3. Local and nonlocal boundary value problems for generalized Aller–Lykov equation

    Ufimsk. Mat. Zh., 15:1 (2023),  22–34
  4. On a ñlass of non-local boundary value problems for the heat equation

    Vestnik KRAUNC. Fiz.-Mat. Nauki, 44:3 (2023),  30–38
  5. Numerical-analytical method for solving a boundary-value problem for the modified equation of moisture transfer with time-fractional derivative

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 198 (2021),  61–67
  6. Numerical-analytical method for solving boundary value problem for the generalized moisture transport equation

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:1 (2021),  19–34
  7. On boundary value problem for generalized Aller equation

    Vestnik SamU. Estestvenno-Nauchnaya Ser., 26:2 (2020),  7–14
  8. Boundary-value problem for the Aller–Lykov nonlocal moisture transfer equation

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 167 (2019),  27–33
  9. Dirichlet boundary value problem for Aller–Lykov moisture transfer equation with fractional derivative in time

    Ufimsk. Mat. Zh., 11:2 (2019),  72–82
  10. Second boundary-value problem for the generalized Aller–Lykov equation

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:4 (2019),  607–621
  11. Boundary-Value Problems for a Wave Equation of Fractional Order

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 149 (2018),  44–55
  12. The boundary value problem for the generalized moisture transfer equation

    Vestnik KRAUNC. Fiz.-Mat. Nauki, 2018, no. 1(21),  21–31
  13. Boundary value problem for the Aller–Lykov moisture transport generalized equation with concentrated heat capacity

    Vestnik SamU. Estestvenno-Nauchnaya Ser., 24:3 (2018),  23–29
  14. Difference schemes for the Aller–Lykov moisture transfer equations with a nonlocal condition

    Vladikavkaz. Mat. Zh., 19:1 (2017),  50–58
  15. First boundary value problem for a nonlocal wave equation

    Applied Mathematics & Physics, 42:6 (2016),  20–23
  16. Modeling of the structure of the composite nanomaterials based on nanotubes and calculation of electrical conductivity using Frank-Lobb algorithm

    News of the Kabardin-Balkar scientific center of RAS, 2013, no. 6-1,  21–26


© Steklov Math. Inst. of RAS, 2024