RUS  ENG
Full version
PEOPLE

Kanovei Vladimir Grigorevich

Publications in Math-Net.Ru

  1. Independence of the comprehension schema in second-order arithmetic from the parameter-free countable choice

    Mat. Zametki, 117:2 (2025),  257–269
  2. Models of set theory in which the separation theorem fails

    Izv. RAN. Ser. Mat., 85:6 (2021),  164–204
  3. On the Equality Relation Modulo a Countable Set

    Mat. Zametki, 108:4 (2020),  629–631
  4. Definable Elements of Definable Borel Sets

    Mat. Zametki, 105:5 (2019),  696–707
  5. Absoluteness of the solovay set Σ

    Sibirsk. Mat. Zh., 60:6 (2019),  1286–1290
  6. Non-uniformizable sets of second projective level with countable cross-sections in the form of Vitali classes

    Izv. RAN. Ser. Mat., 82:1 (2018),  65–96
  7. A Countable Definable Set Containing no Definable Elements

    Mat. Zametki, 102:3 (2017),  369–382
  8. A generic property of the Solovay set $\Sigma$

    Sibirsk. Mat. Zh., 58:6 (2017),  1302–1305
  9. On Effective $\sigma$-Boundedness and $\sigma$-Compactness in Solovay's Model

    Mat. Zametki, 98:2 (2015),  247–257
  10. Generalization of one construction by Solovay

    Sibirsk. Mat. Zh., 56:6 (2015),  1341–1350
  11. Effective Compactness and Sigma-Compactness

    Mat. Zametki, 91:6 (2012),  840–852
  12. An effective minimal encoding of uncountable sets

    Sibirsk. Mat. Zh., 52:5 (2011),  1074–1086
  13. On Hausdorff ordered structures

    Izv. RAN. Ser. Mat., 73:5 (2009),  83–104
  14. Lebesgue measure and gambling

    Mat. Sb., 199:11 (2008),  21–44
  15. Borel reducibility as an additive property of domains

    Zap. Nauchn. Sem. POMI, 358 (2008),  189–198
  16. Reducibility of Monadic Equivalence Relations

    Mat. Zametki, 81:6 (2007),  842–854
  17. Problems in set-theoretic nonstandard analysis

    Uspekhi Mat. Nauk, 62:1(373) (2007),  51–122
  18. A Cofinal Family of Equivalence Relations and Borel Ideals Generating Them

    Trudy Mat. Inst. Steklova, 252 (2006),  94–113
  19. Uniqueness of nonstandard extensions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2006, no. 5,  3–10
  20. Perfect subsets of invariant CA-sets

    Mat. Zametki, 77:3 (2005),  334–338
  21. On the equivalence of two forms of the continuum hypothesis

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2005, no. 3,  62–64
  22. On the Set of Constructible Reals

    Trudy Mat. Inst. Steklova, 247 (2004),  95–128
  23. Some new results on Borel irreducibility of equivalence relations

    Izv. RAN. Ser. Mat., 67:1 (2003),  59–82
  24. On some classical problems of descriptive set theory

    Uspekhi Mat. Nauk, 58:5(353) (2003),  3–88
  25. Nonstandard Set Theory in $\in$-Language

    Mat. Zametki, 70:1 (2001),  46–50
  26. On Ulam's Problem of Stability of Non-exact Homomorphisms

    Trudy Mat. Inst. Steklova, 231 (2000),  249–283
  27. Extension of standard models of ZFC to models of Nelson's nonstandard set theory IST

    Mat. Zametki, 66:2 (1999),  202–210
  28. Pyramidal structure of constructibility degrees

    Mat. Zametki, 63:4 (1998),  632–635
  29. Topologies generated by effectively Suslin sets, and their applications in descriptive set theory

    Uspekhi Mat. Nauk, 51:3(309) (1996),  17–52
  30. On the extension principle in internal set theory

    Sibirsk. Mat. Zh., 33:6 (1992),  66–78
  31. Cardinality of the set of Vitali equivalence classes

    Mat. Zametki, 49:4 (1991),  55–62
  32. Undecidable hypotheses in Edward Nelson's internal set theory

    Uspekhi Mat. Nauk, 46:6(282) (1991),  3–50
  33. Kolmogorov's ideas in the theory of operations on sets

    Uspekhi Mat. Nauk, 43:6(264) (1988),  93–128
  34. The correctness of Euler's method for the factorization of the sine function into an infinite product

    Uspekhi Mat. Nauk, 43:4(262) (1988),  57–81
  35. Work on descriptive set theory carried out at the V. A. Steklov Institute of Mathematics

    Trudy Mat. Inst. Steklov., 182 (1988),  224–244
  36. M. Ya. Suslin's contribution to set-theoretic mathematics

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1988, no. 5,  22–30
  37. N. N. Luzin's problems on the existence of $CA$-sets without perfect subsets

    Mat. Zametki, 41:5 (1987),  750–757
  38. The axiom of determinacy and the modern development of descriptive set theory

    Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 23 (1985),  3–50
  39. Problem of the existence of nonBorel $AF_\|$-sets

    Mat. Zametki, 37:2 (1985),  274–283
  40. The development of the descriptive theory of sets under the influence of the work of Luzin

    Uspekhi Mat. Nauk, 40:3(243) (1985),  117–155
  41. Undecidable and decidable properties of constituents

    Mat. Sb. (N.S.), 124(166):4(8) (1984),  505–535
  42. An answer to Luzin's question about the separability of $CA$-curves

    Mat. Zametki, 33:3 (1983),  435–437
  43. Generalization of P. S. Novikov's theorem on cross sections of Borel sets

    Mat. Zametki, 33:2 (1983),  289–292
  44. Luzin's problems on constituents and their fate

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1983, no. 6,  73–87
  45. N. N. Luzin's problems on imbeddability and decomposability of projective sets

    Mat. Zametki, 32:1 (1982),  23–39
  46. On non-Borel $F_\parallel$-sets

    Dokl. Akad. Nauk SSSR, 260:5 (1981),  1061–1064
  47. On uncountable sequences of sets given by the sieve operation

    Dokl. Akad. Nauk SSSR, 257:4 (1981),  808–812
  48. Theory of Zermelo without power set axiom and the theory of Zermelo–Frenkel without power set axiom are relatively consistent

    Mat. Zametki, 30:3 (1981),  407–419
  49. On some problems of descriptive set theory and the connection between constructibility and definability

    Dokl. Akad. Nauk SSSR, 253:4 (1980),  800–803
  50. The set of all analytically definable sets of natural numbers can be defined analytically

    Izv. Akad. Nauk SSSR Ser. Mat., 43:6 (1979),  1259–1293
  51. A consequence of the Martin axiom

    Mat. Zametki, 26:1 (1979),  113–121
  52. The essentialness of parameters and the complexity of the fundamental formula of the comprehension scheme in second-order arithmetic

    Dokl. Akad. Nauk SSSR, 243:6 (1978),  1384–1386
  53. On the nonemptiness of classes in axiomatic set theory

    Izv. Akad. Nauk SSSR Ser. Mat., 42:3 (1978),  550–579
  54. Proof of a theorem of Lusin

    Mat. Zametki, 23:1 (1978),  61–66
  55. On the independence of some propositions of descriptive set theory and second-order arithmetic

    Dokl. Akad. Nauk SSSR, 223:3 (1975),  552–554
  56. On initial segments of degrees of constructibility

    Mat. Zametki, 17:6 (1975),  939–946
  57. On degrees of constructibility and descriptive properties of the set of real numbers in an initial model and in its extensions

    Dokl. Akad. Nauk SSSR, 216:4 (1974),  728–729
  58. Singular cardinals

    Mat. Zametki, 13:5 (1973),  717–724

  59. Second “Mathematical Readings” in memory of M. Ya. Suslin

    Uspekhi Mat. Nauk, 47:3(285) (1992),  197–198
  60. “Mathematical Readings” in memory of M. Ya. Suslin

    Uspekhi Mat. Nauk, 45:2(272) (1990),  231
  61. First All-Union Seminar on Nonstandard Analysis

    Uspekhi Mat. Nauk, 44:3(267) (1989),  201


© Steklov Math. Inst. of RAS, 2025