|
|
Publications in Math-Net.Ru
-
Supremum of the Euclidean norms of the multidimensional Wiener process and Brownian bridge: Sharp asymptotics of probabilities of large deviations
Fundam. Prikl. Mat., 23:1 (2020), 219–257
-
Integrals of Bessel processes and multi-dimensional Ornstein–Uhlenbeck processes:
exact asymptotics for $L^p$-functionals
Izv. RAN. Ser. Mat., 82:2 (2018), 140–171
-
Functional integrals for the Bogoliubov Gaussian measure: Exact asymptotic forms
TMF, 195:2 (2018), 171–189
-
Brownian motion on $[0,\infty)$ with linear drift, reflected at zero: exact asymptotics for ergodic means
Mat. Sb., 208:7 (2017), 109–144
-
Exact Laplace-type asymptotic formulas for the Bogoliubov Gaussian measure: The set of minimum points of the action functional
TMF, 191:3 (2017), 456–472
-
Weighted $L^p$, $p\ge2$, for a wiener process: Exact asymptoties of small deviations
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 2, 17–22
-
Gaussian Ornstein–Uhlenbeck and Bogoliubov processes: asymptotics of small deviations for $L^p$-functionals, $0<p<\infty$
Probl. Peredachi Inf., 50:4 (2014), 79–99
-
Ergodic means for large values of $T$ and exact asymptotics of small deviations for a multi-dimensional Wiener process
Izv. RAN. Ser. Mat., 77:6 (2013), 169–206
-
The Laplace method for Gaussian measures and integrals in Banach spaces
Probl. Peredachi Inf., 49:4 (2013), 64–86
-
Perturbation theory series in quantum mechanics: Phase transition and exact asymptotic forms for the expansion coefficients
TMF, 174:3 (2013), 416–443
-
On the Laplace method for Gaussian measures in a Banach space
Teor. Veroyatnost. i Primenen., 58:2 (2013), 325–354
-
Negative-order moments for $L^p$-functionals of Wiener processes: exact asymptotics
Izv. RAN. Ser. Mat., 76:3 (2012), 203–224
-
Integral Functionals for the Exponential of the Wiener Process and the Brownian Bridge: Exact Asymptotics and Legendre Functions
Mat. Zametki, 92:1 (2012), 84–105
-
Asymptotic behavior of small deviations for Bogoliubov's Gaussian measure in the $L^p$ norm, $2\le p\le\infty$
TMF, 173:3 (2012), 453–467
-
Exact asymptotics of probabilities of large deviations for Markov chains: the Laplace method
Izv. RAN. Ser. Mat., 75:4 (2011), 189–223
-
Laplace-type exact asymptotic formulas for the Bogoliubov Gaussian measure
TMF, 168:2 (2011), 299–340
-
Exact asymptotics of Laplace-type Wiener integrals for $L^p$-functionals
Izv. RAN. Ser. Mat., 74:1 (2010), 197–224
-
Large deviations for distributions of sums of random variables: Markov chain method
Probl. Peredachi Inf., 46:2 (2010), 66–90
-
Small deviations for two classes of Gaussian stationary processes and $L^p$-functionals, $0<p\le\infty$
Probl. Peredachi Inf., 46:1 (2010), 68–93
-
Exact Asymptotics of Small Deviations for a Stationary Ornstein–Uhlenbeck Process and Some Gaussian Diffusion Processes in the $L_p$-Norm, $2\le p\le\infty$
Probl. Peredachi Inf., 44:2 (2008), 75–95
-
Some asymptotic formulas for the Bogoliubov Gaussian measure
TMF, 157:2 (2008), 286–308
-
Occupation Time and Exact Asymptotics of Distributions of $L^p$-Functionals of the Ornstein–Uhlenbeck Processes, $p>0$
Teor. Veroyatnost. i Primenen., 53:1 (2008), 72–99
-
Occupation times and exact asymptotics of small deviations of Bessel processes for
$L^p$-norms with $p>0$
Izv. RAN. Ser. Mat., 71:4 (2007), 69–102
-
Exact Asymptotics of Distributions of Integral Functionals of the Geometric Brownian Motion and Other Related Formulas
Probl. Peredachi Inf., 43:3 (2007), 75–96
-
An exact asymptotics for small deviations of a nonstationary Ornstein–Uhlenbeck process in the $L^p$-norm, $p\ge2$
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, no. 4, 3–8
-
Exact Asymptotics of Large Deviations of Stationary Ornstein–Uhlenbeck
Processes for $L^p$-Functional, $p>0$
Probl. Peredachi Inf., 42:1 (2006), 52–71
-
The Laplace method for small deviations of Gaussian processes of Wiener type
Mat. Sb., 196:4 (2005), 135–160
-
Point Asymptotics for Probabilities of Large Deviations of the $\omega^2$ Statistics in Verification of the Symmetry Hypothesis
Probl. Peredachi Inf., 40:3 (2004), 33–48
-
Large deviations for Gaussian processes in Hölder norm
Izv. RAN. Ser. Mat., 67:5 (2003), 207–224
-
Constants in the asymptotics of small deviation probabilities for Gaussian processes and fields
Uspekhi Mat. Nauk, 58:4(352) (2003), 89–134
-
Asymptotics of large deviations of
Gaussian processes of Wiener type for $L^p$-functionals, $p>0$,
and the hypergeometric function
Mat. Sb., 194:3 (2003), 61–82
-
Precise Laplace-type asymptotics for moderate deviations
of the distributions of sums of independent Banach-valued random
elements
Teor. Veroyatnost. i Primenen., 48:4 (2003), 720–744
-
Asymptotics of large deviations for Wiener random fields in $L^p$-norm, nonlinear Hammerstein equations, and high-order hyperbolic boundary-value problems
Teor. Veroyatnost. i Primenen., 47:4 (2002), 710–726
-
Large deviations of the $L^p$-norm of a Wiener process with drift
Mat. Zametki, 65:3 (1999), 429–436
-
The double sum method for Gaussian fields with a parameter set in $l^p$
Fundam. Prikl. Mat., 2:4 (1996), 1117–1141
-
Large deviations of Gaussian measures in the spaces $l^p$ and $L^p$, $p\ge 2$
Teor. Veroyatnost. i Primenen., 41:3 (1996), 682–689
-
The Laplace method for probability measures in Banach spaces
Uspekhi Mat. Nauk, 50:6(306) (1995), 57–150
-
The quantization in time of sample functions of differentiable Gaussian processes
Proceedings of the YSU, Physical and Mathematical Sciences, 1991, no. 1, 17–24
-
Errata to the paper in TVP, v. 58, ¹ 2, p. 325–354
Teor. Veroyatnost. i Primenen., 59:2 (2014), 413–414
-
Errata to the paper in v. 41, ¹ 3, p. 682–689
Teor. Veroyatnost. i Primenen., 51:3 (2006), 634–636
© , 2025