RUS  ENG
Full version
PEOPLE

Fatalov Vadim Rolandovich

Publications in Math-Net.Ru

  1. Supremum of the Euclidean norms of the multidimensional Wiener process and Brownian bridge: Sharp asymptotics of probabilities of large deviations

    Fundam. Prikl. Mat., 23:1 (2020),  219–257
  2. Integrals of Bessel processes and multi-dimensional Ornstein–Uhlenbeck processes: exact asymptotics for $L^p$-functionals

    Izv. RAN. Ser. Mat., 82:2 (2018),  140–171
  3. Functional integrals for the Bogoliubov Gaussian measure: Exact asymptotic forms

    TMF, 195:2 (2018),  171–189
  4. Brownian motion on $[0,\infty)$ with linear drift, reflected at zero: exact asymptotics for ergodic means

    Mat. Sb., 208:7 (2017),  109–144
  5. Exact Laplace-type asymptotic formulas for the Bogoliubov Gaussian measure: The set of minimum points of the action functional

    TMF, 191:3 (2017),  456–472
  6. Weighted $L^p$, $p\ge2$, for a wiener process: Exact asymptoties of small deviations

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 2,  17–22
  7. Gaussian Ornstein–Uhlenbeck and Bogoliubov processes: asymptotics of small deviations for $L^p$-functionals, $0<p<\infty$

    Probl. Peredachi Inf., 50:4 (2014),  79–99
  8. Ergodic means for large values of $T$ and exact asymptotics of small deviations for a multi-dimensional Wiener process

    Izv. RAN. Ser. Mat., 77:6 (2013),  169–206
  9. The Laplace method for Gaussian measures and integrals in Banach spaces

    Probl. Peredachi Inf., 49:4 (2013),  64–86
  10. Perturbation theory series in quantum mechanics: Phase transition and exact asymptotic forms for the expansion coefficients

    TMF, 174:3 (2013),  416–443
  11. On the Laplace method for Gaussian measures in a Banach space

    Teor. Veroyatnost. i Primenen., 58:2 (2013),  325–354
  12. Negative-order moments for $L^p$-functionals of Wiener processes: exact asymptotics

    Izv. RAN. Ser. Mat., 76:3 (2012),  203–224
  13. Integral Functionals for the Exponential of the Wiener Process and the Brownian Bridge: Exact Asymptotics and Legendre Functions

    Mat. Zametki, 92:1 (2012),  84–105
  14. Asymptotic behavior of small deviations for Bogoliubov's Gaussian measure in the $L^p$ norm, $2\le p\le\infty$

    TMF, 173:3 (2012),  453–467
  15. Exact asymptotics of probabilities of large deviations for Markov chains: the Laplace method

    Izv. RAN. Ser. Mat., 75:4 (2011),  189–223
  16. Laplace-type exact asymptotic formulas for the Bogoliubov Gaussian measure

    TMF, 168:2 (2011),  299–340
  17. Exact asymptotics of Laplace-type Wiener integrals for $L^p$-functionals

    Izv. RAN. Ser. Mat., 74:1 (2010),  197–224
  18. Large deviations for distributions of sums of random variables: Markov chain method

    Probl. Peredachi Inf., 46:2 (2010),  66–90
  19. Small deviations for two classes of Gaussian stationary processes and $L^p$-functionals, $0<p\le\infty$

    Probl. Peredachi Inf., 46:1 (2010),  68–93
  20. Exact Asymptotics of Small Deviations for a Stationary Ornstein–Uhlenbeck Process and Some Gaussian Diffusion Processes in the $L_p$-Norm, $2\le p\le\infty$

    Probl. Peredachi Inf., 44:2 (2008),  75–95
  21. Some asymptotic formulas for the Bogoliubov Gaussian measure

    TMF, 157:2 (2008),  286–308
  22. Occupation Time and Exact Asymptotics of Distributions of $L^p$-Functionals of the Ornstein–Uhlenbeck Processes, $p>0$

    Teor. Veroyatnost. i Primenen., 53:1 (2008),  72–99
  23. Occupation times and exact asymptotics of small deviations of Bessel processes for $L^p$-norms with $p>0$

    Izv. RAN. Ser. Mat., 71:4 (2007),  69–102
  24. Exact Asymptotics of Distributions of Integral Functionals of the Geometric Brownian Motion and Other Related Formulas

    Probl. Peredachi Inf., 43:3 (2007),  75–96
  25. An exact asymptotics for small deviations of a nonstationary Ornstein–Uhlenbeck process in the $L^p$-norm, $p\ge2$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, no. 4,  3–8
  26. Exact Asymptotics of Large Deviations of Stationary Ornstein–Uhlenbeck Processes for $L^p$-Functional, $p>0$

    Probl. Peredachi Inf., 42:1 (2006),  52–71
  27. The Laplace method for small deviations of Gaussian processes of Wiener type

    Mat. Sb., 196:4 (2005),  135–160
  28. Point Asymptotics for Probabilities of Large Deviations of the $\omega^2$ Statistics in Verification of the Symmetry Hypothesis

    Probl. Peredachi Inf., 40:3 (2004),  33–48
  29. Large deviations for Gaussian processes in Hölder norm

    Izv. RAN. Ser. Mat., 67:5 (2003),  207–224
  30. Constants in the asymptotics of small deviation probabilities for Gaussian processes and fields

    Uspekhi Mat. Nauk, 58:4(352) (2003),  89–134
  31. Asymptotics of large deviations of Gaussian processes of Wiener type for $L^p$-functionals, $p>0$, and the hypergeometric function

    Mat. Sb., 194:3 (2003),  61–82
  32. Precise Laplace-type asymptotics for moderate deviations of the distributions of sums of independent Banach-valued random elements

    Teor. Veroyatnost. i Primenen., 48:4 (2003),  720–744
  33. Asymptotics of large deviations for Wiener random fields in $L^p$-norm, nonlinear Hammerstein equations, and high-order hyperbolic boundary-value problems

    Teor. Veroyatnost. i Primenen., 47:4 (2002),  710–726
  34. Large deviations of the $L^p$-norm of a Wiener process with drift

    Mat. Zametki, 65:3 (1999),  429–436
  35. The double sum method for Gaussian fields with a parameter set in $l^p$

    Fundam. Prikl. Mat., 2:4 (1996),  1117–1141
  36. Large deviations of Gaussian measures in the spaces $l^p$ and $L^p$, $p\ge 2$

    Teor. Veroyatnost. i Primenen., 41:3 (1996),  682–689
  37. The Laplace method for probability measures in Banach spaces

    Uspekhi Mat. Nauk, 50:6(306) (1995),  57–150
  38. The quantization in time of sample functions of differentiable Gaussian processes

    Proceedings of the YSU, Physical and Mathematical Sciences, 1991, no. 1,  17–24

  39. Errata to the paper in TVP, v. 58, ¹ 2, p. 325–354

    Teor. Veroyatnost. i Primenen., 59:2 (2014),  413–414
  40. Errata to the paper in v. 41, ¹ 3, p. 682–689

    Teor. Veroyatnost. i Primenen., 51:3 (2006),  634–636


© Steklov Math. Inst. of RAS, 2025