|
|
Publications in Math-Net.Ru
-
Graphs $\Gamma$ of diameter 4 for which $\Gamma_{3,4}$ is a strongly regular graph with $\mu=4,6$
Ural Math. J., 10:1 (2024), 76–83
-
On small distance-regular graphs with the intersection arrays $\{mn-1,(m-1)(n+1)$, $n-m+1;1,1,(m-1)(n+1)\}$
Diskr. Mat., 34:1 (2022), 76–87
-
On a class of vertex-primitive arc-transitive amply regular graphs
Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022), 258–268
-
On $Q$-polynomial Shilla graphs with $b = 4$
Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022), 176–186
-
On nonexistence of distance regular graphs with the intersection array $\{53,40,28,16;1,4,10,28\}$
Diskretn. Anal. Issled. Oper., 28:3 (2021), 38–48
-
Three infinite families of Shilla graphs do not exist
Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021), 45–50
-
Automorphisms of a graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$
Algebra Logika, 59:5 (2020), 567–581
-
Distance-regular graphs with intersection arrays $\{104,70,25;1,7,80\}$ and $\{272,210,49;1,15,224\}$ do not exist
Trudy Inst. Mat. i Mekh. UrO RAN, 26:4 (2020), 98–105
-
A Shilla graph with Intersection Array $\{12,10,2;1,2,8\}$ Does not Exist
Mat. Zametki, 106:5 (2019), 797–800
-
Automorphisms of small graphs with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$
Sib. Èlektron. Mat. Izv., 16 (2019), 1245–1253
-
Nonexistence of certain Q-polynomial distance-regular graphs
Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019), 136–141
-
Automorphisms of graph with intersection array $\{289,216,1;1,72,289\}$
Sib. Èlektron. Mat. Izv., 15 (2018), 603–611
-
Automorphisms of a distance-regular graph with intersection array {35, 32, 28; 1, 4, 8}
Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018), 54–63
-
Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$
Sib. Èlektron. Mat. Izv., 14 (2017), 1064–1077
© , 2024