RUS  ENG
Full version
PEOPLE

Golubyatnikov Mikhail Petrovich

Publications in Math-Net.Ru

  1. Graphs $\Gamma$ of diameter 4 for which $\Gamma_{3,4}$ is a strongly regular graph with $\mu=4,6$

    Ural Math. J., 10:1 (2024),  76–83
  2. On small distance-regular graphs with the intersection arrays $\{mn-1,(m-1)(n+1)$, $n-m+1;1,1,(m-1)(n+1)\}$

    Diskr. Mat., 34:1 (2022),  76–87
  3. On a class of vertex-primitive arc-transitive amply regular graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022),  258–268
  4. On $Q$-polynomial Shilla graphs with $b = 4$

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022),  176–186
  5. On nonexistence of distance regular graphs with the intersection array $\{53,40,28,16;1,4,10,28\}$

    Diskretn. Anal. Issled. Oper., 28:3 (2021),  38–48
  6. Three infinite families of Shilla graphs do not exist

    Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021),  45–50
  7. Automorphisms of a graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$

    Algebra Logika, 59:5 (2020),  567–581
  8. Distance-regular graphs with intersection arrays $\{104,70,25;1,7,80\}$ and $\{272,210,49;1,15,224\}$ do not exist

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:4 (2020),  98–105
  9. A Shilla graph with Intersection Array $\{12,10,2;1,2,8\}$ Does not Exist

    Mat. Zametki, 106:5 (2019),  797–800
  10. Automorphisms of small graphs with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$

    Sib. Èlektron. Mat. Izv., 16 (2019),  1245–1253
  11. Nonexistence of certain Q-polynomial distance-regular graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019),  136–141
  12. Automorphisms of graph with intersection array $\{289,216,1;1,72,289\}$

    Sib. Èlektron. Mat. Izv., 15 (2018),  603–611
  13. Automorphisms of a distance-regular graph with intersection array {35, 32, 28; 1, 4, 8}

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018),  54–63
  14. Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$

    Sib. Èlektron. Mat. Izv., 14 (2017),  1064–1077


© Steklov Math. Inst. of RAS, 2024