|
|
Publications in Math-Net.Ru
-
Fractional Kinetic Equations
Mat. Zametki, 112:4 (2022), 567–585
-
On a probabilistic derivation of the basic particle statistics (Bose–Einstein, Fermi–Dirac, canonical, grand-canonical, intermediate) and related distributions
Tr. Mosk. Mat. Obs., 82:1 (2021), 93–104
-
Fractional McKean–Vlasov and Hamilton–Jacobi–Bellman–Isaacs Equations
Trudy Inst. Mat. i Mekh. UrO RAN, 27:3 (2021), 87–100
-
Abstract McKean–Vlasov and Hamilton–Jacobi–Bellman Equations, Their Fractional Versions and Related Forward–Backward Systems on Riemannian Manifolds
Trudy Mat. Inst. Steklova, 315 (2021), 128–150
-
The law of large numbers for quantum stochastic filtering and control of many-particle systems
TMF, 208:1 (2021), 97–121
-
Mixed Fractional Differential Equations and Generalized Operator-Valued Mittag-Leffler Functions
Mat. Zametki, 106:5 (2019), 687–707
-
Regularity and sensitivity for McKean–Vlasov type SPDEs generated by stable-like processes
Probl. Anal. Issues Anal., 7(25):2 (2018), 69–81
-
Mean field games based on the stable-like processes
Mat. Teor. Igr Pril., 5:4 (2013), 33–65
-
Stochastic Monotonicity and Duality for One-Dimensional Markov Processes
Mat. Zametki, 89:5 (2011), 694–704
-
Technologies of perforation of closely spaced micron holes with the help of neodymium—LiF:F2- lasers
Kvantovaya Elektronika, 39:4 (2009), 385–387
-
Generalized Continuous-Time Random Walks, Subordination by Hitting Times, and Fractional Dynamics
Teor. Veroyatnost. i Primenen., 53:4 (2008), 684–703
-
Schrödinger operators with singular potentials and magnetic fields
Mat. Sb., 194:6 (2003), 105–126
-
Idempotent structures in optimization
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 65 (1999), 118–174
-
Asymptotically stable invariant tori of a vector field $V(x)$ and the quasimodes of the operator $V(x)\cdot\nabla-\varepsilon\Delta$
Mat. Zametki, 58:2 (1995), 301–306
-
Estimates of accuracy for the asymptotics of the Laplace integral
Trudy Mat. Inst. Steklov., 203 (1994), 113–115
-
On the asymptotics of low eigenvalues and eigenfunctions of the Schrödinger operator
Dokl. Akad. Nauk, 328:6 (1993), 649–653
-
Splitting amplitudes of the lowest energy levels of the Schrödinger operator with double-well potential
TMF, 94:3 (1993), 426–434
-
The Bellman differential equation and the Pontryagin maximum
principle for multicriterial optimization problems
Dokl. Akad. Nauk, 324:1 (1992), 29–34
-
The stochastic Bellman equation as a nonlinear equation in Maslov
spaces. Perturbation theory
Dokl. Akad. Nauk, 323:2 (1992), 223–228
-
Introduction of a new Maslov-type currency (coupons) as a means
for solving the market game under nonequilibrium prices
Dokl. Akad. Nauk SSSR, 320:6 (1991), 1310–1314
-
Application of quasi-classical methods in a study of the Belavkin quantum filtration
Mat. Zametki, 50:5 (1991), 153–156
-
Semiclassical asymptotics of quantum stochastic equations
TMF, 89:2 (1991), 163–177
-
Splitting of the lowest energy levels of the Schrödinger equation and asymptotic behavior of the fundamental solution of the equation $hu_t=h^2\Delta u/2-V(x)u$
TMF, 87:3 (1991), 323–375
-
The Maslov index in infinite-dimensional symplectic geometry
Mat. Zametki, 48:6 (1990), 142–145
-
Idempotent analysis as a tool of control theory and optimal synthesis. 2
Funktsional. Anal. i Prilozhen., 23:4 (1989), 53–62
-
Idempotent analysis as a tool of control theory and optimal synthesis. I
Funktsional. Anal. i Prilozhen., 23:1 (1989), 1–14
-
Turnpikes and infinite extremals in Markov decision processes
Mat. Zametki, 46:4 (1989), 118–120
-
An infinite series of local conservation laws of Miura type for higher Benney equations
Uspekhi Mat. Nauk, 43:4(262) (1988), 193–194
-
The Cauchy problem for the homogeneous Bellman equation
Dokl. Akad. Nauk SSSR, 296:4 (1987), 796–800
-
General form of endomorphisms in the space of continuous functions with values in a numerical commutative semiring (with the operation $\oplus=\max$)
Dokl. Akad. Nauk SSSR, 295:2 (1987), 283–287
-
New examples of manifolds with closed geodesics
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 4, 80–82
-
Geodesic flows on two-dimensional manifolds with an additional first integral that is polynomial in the velocities
Izv. Akad. Nauk SSSR Ser. Mat., 46:5 (1982), 994–1010
-
Anatolii Mikhailovich Stepin (obituary)
Uspekhi Mat. Nauk, 77:2(464) (2022), 189–194
© , 2024