|
|
Publications in Math-Net.Ru
-
Compressed and partially compressed zero-divisor graphs of finite associative rings
Sibirsk. Mat. Zh., 64:2 (2023), 281–291
-
Compressed zero-divisor graphs of finite associative rings
Sibirsk. Mat. Zh., 61:1 (2020), 96–106
-
On zero divisor graphs of finite commutative local rings
Sib. Èlektron. Mat. Izv., 16 (2019), 465–480
-
On finite rings in which nilpotent graphs satisfy the Dirac’s condition
Sib. Èlektron. Mat. Izv., 14 (2017), 1373–1379
-
Finite rings with Eulerian nilpotent graphs
Sib. Èlektron. Mat. Izv., 14 (2017), 274–279
-
Finite rings with regular nilpotent graphs
Sib. Èlektron. Mat. Izv., 12 (2015), 810–817
-
On structure of finite nilpotent rings with some restrictions on zero-divisor graphs
Sib. Èlektron. Mat. Izv., 12 (2015), 122–129
-
Finite rings with some restrictions on zero-divisor graphs
Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 12, 48–59
-
Describing ring varieties in which all finite rings have Hamiltonian zero-divisor graphs
Algebra Logika, 52:2 (2013), 203–218
-
Description of ring varieties whose finite rings are uniquely determined by their zero-divisor graphs
Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 6, 13–24
-
On Nilpotent Rings of Order $p^4$ with Some Additional Properties
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:3 (2013), 53–69
-
Finite rings with complete bipartite zero-divisor graphs
Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 3, 24–30
-
On some properties of ring varieties, where isomorphic zero-divisor graphs of finite rings give isomorhic rings
Sib. Èlektron. Mat. Izv., 8 (2011), 179–190
-
Description of finite nonnilpotent rings with planar zero-divisor graphs
Diskr. Mat., 21:4 (2009), 60–75
-
Varieties of rings, where all subdirectly irreducible finite rings are Armendariz ones
Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 8, 45–52
© , 2024