RUS  ENG
Full version
PEOPLE

Shefel' Samuil Zusevich

Publications in Math-Net.Ru

  1. Differential properties of mappings that are conformal at a point

    Sibirsk. Mat. Zh., 27:1 (1986),  132–142
  2. Smoothness of convex surfaces and generalized solutions of the Monge–Ampère equation based on differential properties of quasiconformal mappings

    Sibirsk. Mat. Zh., 26:6 (1985),  77–89
  3. Convex surfaces with positive bounded specific curvature, and a priori estimates for Monge–Ampère equations

    Sibirsk. Mat. Zh., 26:4 (1985),  120–136
  4. Geometric properties of embedded manifolds

    Sibirsk. Mat. Zh., 26:1 (1985),  170–188
  5. Smoothness of convex surfaces on the basis of differential properties of quasiconformal mappings

    Dokl. Akad. Nauk SSSR, 267:2 (1982),  296–300
  6. Smoothness of a conformal mapping of Riemannian spaces

    Sibirsk. Mat. Zh., 23:1 (1982),  153–159
  7. Conformal correspondence of metrics and the smoothness of isometric immersions

    Sibirsk. Mat. Zh., 20:2 (1979),  397–401
  8. A theorem of Chern–Kuiper

    Sibirsk. Mat. Zh., 19:6 (1978),  1386–1387
  9. Smoothness of the solution of Minkowski's problem

    Sibirsk. Mat. Zh., 18:2 (1977),  472–475
  10. Connections between the order of smoothness of a surface and that of its metric

    Sibirsk. Mat. Zh., 17:4 (1976),  916–925
  11. $C^1$-smooth surfaces of bounded positive extrinsic curvature

    Sibirsk. Mat. Zh., 16:5 (1975),  1122–1123
  12. $C^1$-smooth isometric imbeddings

    Sibirsk. Mat. Zh., 15:6 (1974),  1372–1393
  13. Surfaces with bounded extrinsic curvature and positive Gauss curvature

    Dokl. Akad. Nauk SSSR, 200:2 (1971),  259–261
  14. Isometric imbeddings of class $C^1$

    Dokl. Akad. Nauk SSSR, 195:5 (1970),  1052–1054
  15. Completely regular isometric imbeddings in Euclidean space

    Sibirsk. Mat. Zh., 11:2 (1970),  442–460
  16. The two classes of $k$-dimensional surfaces in $n$-dimensional Euclidean space

    Sibirsk. Mat. Zh., 10:2 (1969),  459–466
  17. Nonregular surfaces of bounded outer curvature and isoperimetric type inequalities

    Dokl. Akad. Nauk SSSR, 182:5 (1968),  997–999
  18. Compactness condition for a family of saddle surfaces

    Sibirsk. Mat. Zh., 8:3 (1967),  705–714
  19. On saddle surfaces bounded by a rectifiable curve

    Dokl. Akad. Nauk SSSR, 162:2 (1965),  294–296
  20. On the intrinsic geometry of saddle surfaces

    Sibirsk. Mat. Zh., 5:6 (1964),  1382–1396


© Steklov Math. Inst. of RAS, 2024