RUS  ENG
Full version
PEOPLE

Sachkov Yurii Leonidovich

Publications in Math-Net.Ru

  1. Curvature and isometries of the Lorentzian Lobachevsky plane

    Uspekhi Mat. Nauk, 79:1(475) (2024),  185–186
  2. Lorentzian Geometry on the Lobachevsky Plane

    Mat. Zametki, 114:1 (2023),  154–157
  3. Sub-Lorentzian Problem on the Heisenberg Group

    Mat. Zametki, 113:1 (2023),  154–157
  4. Abnormal Extremals in the Sub-Riemannian Problem with Growth Vector $(2, 3, 5, 8, 14)$

    Rus. J. Nonlin. Dyn., 19:4 (2023),  559–573
  5. Left-invariant optimal control problems on Lie groups that are integrable by elliptic functions

    Uspekhi Mat. Nauk, 78:1(469) (2023),  67–166
  6. Abnormal Trajectories in the Sub-Riemannian $(2,3,5,8)$ Problem

    Trudy Mat. Inst. Steklova, 321 (2023),  252–285
  7. Extremal Trajectories in a Time-Optimal Problem on the Group of Motions of a Plane with Admissible Control in a Circular Sector

    Trudy Mat. Inst. Steklova, 321 (2023),  215–222
  8. Sub-Riemannian Cartan sphere

    Dokl. RAN. Math. Inf. Proc. Upr., 507 (2022),  66–70
  9. Left-invariant optimal control problems on Lie groups: classification and problems integrable by elementary functions

    Uspekhi Mat. Nauk, 77:1(463) (2022),  109–176
  10. Sub-Riemannian Engel sphere

    Dokl. RAN. Math. Inf. Proc. Upr., 500 (2021),  97–101
  11. Sub-riemannian (2, 3, 5, 6)-structures

    Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021),  73–78
  12. Extremals for a series of sub-Finsler problems with 2-dimensional control via convex trigonometry

    ESAIM: COCV, 27 (2021),  32–52
  13. An Abnormal Set for the $(2,3,5,8)$-Distribution

    Mat. Zametki, 109:2 (2021),  318–320
  14. Carnot Algebras and Sub-Riemannian Structures with Growth Vector (2,$\,$3,$\,$5,$\,$6)

    Trudy Mat. Inst. Steklova, 315 (2021),  237–246
  15. Explicit solutions for a series of optimization problems with 2-dimensional control via convex trigonometry

    Dokl. RAN. Math. Inf. Proc. Upr., 494 (2020),  86–92
  16. Periodic time-optimal controls on two-step free-nilpotent Lie groups

    Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020),  108–111
  17. Coadjoint Orbits and Time-Optimal Problems for Step-$2$ Free Nilpotent Lie Groups

    Mat. Zametki, 108:6 (2020),  899–910
  18. Conjugate Points in the Generalized Dido Problem

    Mat. Zametki, 108:5 (2020),  796–798
  19. Optimal Bang-Bang Trajectories in Sub-Finsler Problems on the Engel Group

    Rus. J. Nonlin. Dyn., 16:2 (2020),  355–367
  20. Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems

    Regul. Chaotic Dyn., 25:1 (2020),  33–39
  21. The structure of abnormal extremals in a sub-Riemannian problem with growth vector $(2, 3, 5, 8)$

    Mat. Sb., 211:10 (2020),  112–138
  22. Symmetries and Parameterization of Abnormal Extremals in the Sub-Riemannian Problem with the Growth Vector (2, 3, 5, 8)

    Rus. J. Nonlin. Dyn., 15:4 (2019),  577–585
  23. Sub-Finsler Geodesics on the Cartan Group

    Regul. Chaotic Dyn., 24:1 (2019),  36–60
  24. A Sub-Finsler Problem on the Cartan Group

    Trudy Mat. Inst. Steklova, 304 (2019),  49–67
  25. Two-side bound of a root of an equation containing complete elliptic integrals

    Program Systems: Theory and Applications, 9:4 (2018),  253–264
  26. Extremal trajectories in the sub-Lorentzian problem on the Engel group

    Mat. Sb., 209:11 (2018),  3–31
  27. Liouville integrability of sub-Riemannian problems on Carnot groups of step 4 or greater

    Mat. Sb., 209:5 (2018),  74–119
  28. Liouville nonintegrability of sub-Riemannian problems on free Carnot groups of step 4

    Dokl. Akad. Nauk, 474:1 (2017),  19–21
  29. Degenerate abnormal trajectories in a sub-Riemannian problem with growth vector $(2, 3, 5, 8)$

    Differ. Uravn., 53:3 (2017),  362–374
  30. Maxwell Strata and Cut Locus in the Sub-Riemannian Problem on the Engel Group

    Regul. Chaotic Dyn., 22:8 (2017),  909–936
  31. Relation Between Euler’s Elasticae and Sub-Riemannian Geodesics on $SE(2)$

    Regul. Chaotic Dyn., 21:7-8 (2016),  832–839
  32. Geodesics in the sub-Riemannian problem on the group $\mathrm{SO}(3)$

    Mat. Sb., 207:7 (2016),  29–56
  33. On the free Carnot (2,3,5,8) group

    Program Systems: Theory and Applications, 6:2 (2015),  45–61
  34. Algorithms for evaluation position and orientation of UAV

    Program Systems: Theory and Applications, 3:3 (2012),  23–39
  35. Closed Euler elasticae

    Trudy Mat. Inst. Steklova, 278 (2012),  227–241
  36. Antropomorphic recovery of corrupted images via methods of sub-Riemannian geometry

    Program Systems: Theory and Applications, 2:4 (2011),  3–15
  37. Extremal trajectories in a nilpotent sub-Riemannian problem on the Engel group

    Mat. Sb., 202:11 (2011),  31–54
  38. Extremal trajectories and the asymptotics of the Maxwell time in the problem of the optimal rolling of a sphere on a plane

    Mat. Sb., 202:9 (2011),  97–120
  39. Parallel algorithm and software for recovery of isophotes for corrupted images

    Program Systems: Theory and Applications, 1:1 (2010),  3–20
  40. Maxwell strata and symmetries in the problem of optimal rolling of a sphere over a plane

    Mat. Sb., 201:7 (2010),  99–120
  41. Stability of inflectional elasticae centered at vertices or inflection points

    Trudy Mat. Inst. Steklova, 271 (2010),  187–203
  42. Solution to Euler's elastic problem

    Avtomat. i Telemekh., 2009, no. 4,  78–88
  43. Representation and realization of the generalized solutions of the unlimited-locus controllable systems

    Avtomat. i Telemekh., 2008, no. 4,  72–80
  44. Control theory on Lie groups

    CMFD, 27 (2008),  5–59
  45. Complete description of the Maxwell strata in the generalized Dido problem

    Mat. Sb., 197:6 (2006),  111–160
  46. The Maxwell set in the generalized Dido problem

    Mat. Sb., 197:4 (2006),  123–150
  47. Discrete symmetries in the generalized Dido problem

    Mat. Sb., 197:2 (2006),  95–116
  48. Exponential map in the generalized Dido problem

    Mat. Sb., 194:9 (2003),  63–90
  49. Invariant orthants of bilinear systems

    Differ. Uravn., 31:6 (1995),  1094–1095
  50. Positive orthant scalar controllability of bilinear systems

    Mat. Zametki, 58:3 (1995),  419–424
  51. Controllability of two- and three-dimensional bilinear systems in the positive orthant

    Differ. Uravn., 29:2 (1993),  361–363
  52. Invariant domains of three-dimensional bilinear systems

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1991, no. 4,  23–26
  53. Controllability of three-dimensional bilinear systems

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1991, no. 3,  26–30

  54. Optimal Bang-Bang Trajectories in Sub-Finsler Problem on the Cartan Group

    Nelin. Dinam., 14:4 (2018),  583–593
  55. Generalized Solutions in Control Problems (International Symposium GSCP-2002, Pereslavl-Zalesskii, August, 27–31, 2002)

    Differ. Uravn., 39:8 (2003),  1140–1143


© Steklov Math. Inst. of RAS, 2024