|
|
Publications in Math-Net.Ru
-
Curvature and isometries of the Lorentzian Lobachevsky plane
Uspekhi Mat. Nauk, 79:1(475) (2024), 185–186
-
Lorentzian Geometry on the Lobachevsky Plane
Mat. Zametki, 114:1 (2023), 154–157
-
Sub-Lorentzian Problem on the Heisenberg Group
Mat. Zametki, 113:1 (2023), 154–157
-
Abnormal Extremals in the Sub-Riemannian Problem with Growth Vector $(2, 3, 5, 8, 14)$
Rus. J. Nonlin. Dyn., 19:4 (2023), 559–573
-
Left-invariant optimal control problems on Lie groups that are integrable by elliptic functions
Uspekhi Mat. Nauk, 78:1(469) (2023), 67–166
-
Abnormal Trajectories in the Sub-Riemannian $(2,3,5,8)$ Problem
Trudy Mat. Inst. Steklova, 321 (2023), 252–285
-
Extremal Trajectories in a Time-Optimal Problem on the Group of Motions of a Plane with Admissible Control in a Circular Sector
Trudy Mat. Inst. Steklova, 321 (2023), 215–222
-
Sub-Riemannian Cartan sphere
Dokl. RAN. Math. Inf. Proc. Upr., 507 (2022), 66–70
-
Left-invariant optimal control problems on Lie groups: classification and problems integrable by elementary functions
Uspekhi Mat. Nauk, 77:1(463) (2022), 109–176
-
Sub-Riemannian Engel sphere
Dokl. RAN. Math. Inf. Proc. Upr., 500 (2021), 97–101
-
Sub-riemannian (2, 3, 5, 6)-structures
Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 73–78
-
Extremals for a series of sub-Finsler problems with 2-dimensional control via convex trigonometry
ESAIM: COCV, 27 (2021), 32–52
-
An Abnormal Set for the $(2,3,5,8)$-Distribution
Mat. Zametki, 109:2 (2021), 318–320
-
Carnot Algebras and Sub-Riemannian Structures with Growth Vector (2,$\,$3,$\,$5,$\,$6)
Trudy Mat. Inst. Steklova, 315 (2021), 237–246
-
Explicit solutions for a series of optimization problems with 2-dimensional control via convex trigonometry
Dokl. RAN. Math. Inf. Proc. Upr., 494 (2020), 86–92
-
Periodic time-optimal controls on two-step free-nilpotent Lie groups
Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020), 108–111
-
Coadjoint Orbits and Time-Optimal Problems for Step-$2$ Free Nilpotent Lie Groups
Mat. Zametki, 108:6 (2020), 899–910
-
Conjugate Points in the Generalized Dido Problem
Mat. Zametki, 108:5 (2020), 796–798
-
Optimal Bang-Bang Trajectories in Sub-Finsler Problems on the Engel Group
Rus. J. Nonlin. Dyn., 16:2 (2020), 355–367
-
Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems
Regul. Chaotic Dyn., 25:1 (2020), 33–39
-
The structure of abnormal extremals in a sub-Riemannian problem with growth vector $(2, 3, 5, 8)$
Mat. Sb., 211:10 (2020), 112–138
-
Symmetries and Parameterization of Abnormal Extremals in the Sub-Riemannian Problem with the Growth Vector (2, 3, 5, 8)
Rus. J. Nonlin. Dyn., 15:4 (2019), 577–585
-
Sub-Finsler Geodesics on the Cartan Group
Regul. Chaotic Dyn., 24:1 (2019), 36–60
-
A Sub-Finsler Problem on the Cartan Group
Trudy Mat. Inst. Steklova, 304 (2019), 49–67
-
Two-side bound of a root of an equation containing complete elliptic integrals
Program Systems: Theory and Applications, 9:4 (2018), 253–264
-
Extremal trajectories in the sub-Lorentzian problem on the Engel group
Mat. Sb., 209:11 (2018), 3–31
-
Liouville integrability of sub-Riemannian problems on Carnot groups of step 4 or greater
Mat. Sb., 209:5 (2018), 74–119
-
Liouville nonintegrability of sub-Riemannian problems on free Carnot groups of step 4
Dokl. Akad. Nauk, 474:1 (2017), 19–21
-
Degenerate abnormal trajectories in a sub-Riemannian problem with growth vector $(2, 3, 5, 8)$
Differ. Uravn., 53:3 (2017), 362–374
-
Maxwell Strata and Cut Locus in the Sub-Riemannian Problem on the Engel Group
Regul. Chaotic Dyn., 22:8 (2017), 909–936
-
Relation Between Euler’s Elasticae and Sub-Riemannian Geodesics on $SE(2)$
Regul. Chaotic Dyn., 21:7-8 (2016), 832–839
-
Geodesics in the sub-Riemannian problem on the group $\mathrm{SO}(3)$
Mat. Sb., 207:7 (2016), 29–56
-
On the free Carnot (2,3,5,8) group
Program Systems: Theory and Applications, 6:2 (2015), 45–61
-
Algorithms for evaluation position and orientation of UAV
Program Systems: Theory and Applications, 3:3 (2012), 23–39
-
Closed Euler elasticae
Trudy Mat. Inst. Steklova, 278 (2012), 227–241
-
Antropomorphic recovery of corrupted images via methods of sub-Riemannian geometry
Program Systems: Theory and Applications, 2:4 (2011), 3–15
-
Extremal trajectories in a nilpotent sub-Riemannian problem on the Engel group
Mat. Sb., 202:11 (2011), 31–54
-
Extremal trajectories and the asymptotics of the Maxwell time in the problem of the optimal rolling of a sphere on a plane
Mat. Sb., 202:9 (2011), 97–120
-
Parallel algorithm and software for recovery of isophotes for corrupted images
Program Systems: Theory and Applications, 1:1 (2010), 3–20
-
Maxwell strata and symmetries in the problem of optimal rolling of a sphere over a plane
Mat. Sb., 201:7 (2010), 99–120
-
Stability of inflectional elasticae centered at vertices or inflection points
Trudy Mat. Inst. Steklova, 271 (2010), 187–203
-
Solution to Euler's elastic problem
Avtomat. i Telemekh., 2009, no. 4, 78–88
-
Representation and realization of the generalized solutions of the unlimited-locus controllable systems
Avtomat. i Telemekh., 2008, no. 4, 72–80
-
Control theory on Lie groups
CMFD, 27 (2008), 5–59
-
Complete description of the Maxwell strata in the
generalized Dido problem
Mat. Sb., 197:6 (2006), 111–160
-
The Maxwell set in the generalized Dido problem
Mat. Sb., 197:4 (2006), 123–150
-
Discrete symmetries in the generalized Dido problem
Mat. Sb., 197:2 (2006), 95–116
-
Exponential map in the generalized Dido problem
Mat. Sb., 194:9 (2003), 63–90
-
Invariant orthants of bilinear systems
Differ. Uravn., 31:6 (1995), 1094–1095
-
Positive orthant scalar controllability of bilinear systems
Mat. Zametki, 58:3 (1995), 419–424
-
Controllability of two- and three-dimensional bilinear systems in the positive orthant
Differ. Uravn., 29:2 (1993), 361–363
-
Invariant domains of three-dimensional bilinear systems
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1991, no. 4, 23–26
-
Controllability of three-dimensional bilinear systems
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1991, no. 3, 26–30
-
Optimal Bang-Bang Trajectories in Sub-Finsler Problem on the Cartan Group
Nelin. Dinam., 14:4 (2018), 583–593
-
Generalized Solutions in Control Problems (International Symposium GSCP-2002, Pereslavl-Zalesskii, August, 27–31, 2002)
Differ. Uravn., 39:8 (2003), 1140–1143
© , 2024