|
|
Publications in Math-Net.Ru
-
Functions Almost Universal in the Sense of Signs with Respect to the Trigonometric System and the Walsh System
Mat. Zametki, 115:6 (2024), 935–939
-
On universal (in the sense of signs) Fourier series with respect to the Walsh system
Mat. Sb., 215:6 (2024), 3–28
-
On Fourier series in the multiple trigonometric system
Uspekhi Mat. Nauk, 78:4(472) (2023), 201–202
-
On the Convergence of Negative-Order Cesàro Means of Fourier and Fourier–Walsh Series
Mat. Zametki, 112:3 (2022), 474–477
-
On universal Fourier series in the Walsh system
Sibirsk. Mat. Zh., 63:5 (2022), 1035–1051
-
On Almost Universal Double Fourier Series
Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022), 91–102
-
On the existence and structure of universal functions
Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 30–33
-
Functions universal with respect to the trigonometric system
Izv. RAN. Ser. Mat., 85:2 (2021), 73–94
-
On universal Fourier–Walsh series
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 200 (2021), 45–57
-
On unconditional and absolute convergence of the Haar series in the metric of $L^{p}[0,1]$ with $0<p<1$
Sibirsk. Mat. Zh., 62:4 (2021), 747–757
-
Universal Fourier Series
Mat. Zametki, 108:2 (2020), 296–299
-
Functions with universal Fourier-Walsh series
Mat. Sb., 211:6 (2020), 107–131
-
Absolute convergence of the double fourier–franklin series
Sibirsk. Mat. Zh., 61:3 (2020), 513–527
-
On the uniform convergence of double Furier–Walsh series
Proceedings of the YSU, Physical and Mathematical Sciences, 54:1 (2020), 20–28
-
The structure of universal functions for $L^p$-spaces, $p\in(0,1)$
Mat. Sb., 209:1 (2018), 37–57
-
The Fourier–Faber–Schauder series unconditionally divergent in measure
Sibirsk. Mat. Zh., 59:5 (2018), 1057–1065
-
On the absolute convergence of Fourier–Haar series in the metric of $L^p(0,1)$, $0<p<1$
Zap. Nauchn. Sem. POMI, 467 (2018), 34–54
-
Universal functions in ‘correction’ problems guaranteeing the convergence of Fourier–Walsh series
Izv. RAN. Ser. Mat., 80:6 (2016), 65–91
-
On existence of a universal function for $L^p[0,1]$ with $p\in(0,1)$
Sibirsk. Mat. Zh., 57:5 (2016), 1021–1035
-
Convergence of Fourier series in classical systems
Mat. Sb., 206:7 (2015), 55–94
-
Nonlinear approximation of functions from the class $L^r$ with respect to the Vilenkin system
Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 2, 30–39
-
Luzin's Correction Theorem and the Coefficients of Fourier Expansions in the Faber–Schauder System
Mat. Zametki, 93:2 (2013), 172–178
-
Modifications of functions, Fourier coefficients and nonlinear approximation
Mat. Sb., 203:3 (2012), 49–78
-
On the strengthened $L^1$-greedy property of the Walsh system
Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5, 26–37
-
Non-linear approximation of continuous functions
by the Faber-Schauder system
Mat. Sb., 199:5 (2008), 3–26
-
On the $L^p_\mu$-strong property of orthonormal systems
Mat. Sb., 194:10 (2003), 77–106
-
On an orthonormal system
Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 4, 24–28
-
On the representation of functions by series of Legandre polynomials in weighted $L_\mu^q [-1, 1]$ spaces
Proceedings of the YSU, Physical and Mathematical Sciences, 2001, no. 1, 136–138
-
On universality systems in $L^p$, $1\leq p<2$
Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 5, 19–22
-
On some properties of orthogonal systems
Izv. RAN. Ser. Mat., 57:5 (1993), 75–105
-
On certain properties of orthogonal systems
Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 10, 80–82
-
Convergence of Fourier–Laplace series in the $L^p$ metric
Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 2, 17–23
-
The almost everywhere convergence of fourier series according to complete orthonormal systems
Mat. Zametki, 51:5 (1992), 35–43
-
Convergence of Laplace and Fourier series
Dokl. Akad. Nauk SSSR, 315:2 (1990), 265–266
-
Convergence of Fourier-Walsh series in the $L^1$ metric and almost everywhere
Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 11, 9–18
-
On convergence of Fourier series in complete orthonormal systems in the $L^1$-metric and almost everywhere
Mat. Sb., 181:8 (1990), 1011–1030
-
The representation of measurable functions by usual and multiple series of Legendre polynomials
Proceedings of the YSU, Physical and Mathematical Sciences, 1988, no. 1, 143–146
© , 2024