RUS  ENG
Full version
PEOPLE

Grigoryan Martin Gevorgovich

Publications in Math-Net.Ru

  1. Functions Almost Universal in the Sense of Signs with Respect to the Trigonometric System and the Walsh System

    Mat. Zametki, 115:6 (2024),  935–939
  2. On universal (in the sense of signs) Fourier series with respect to the Walsh system

    Mat. Sb., 215:6 (2024),  3–28
  3. On Fourier series in the multiple trigonometric system

    Uspekhi Mat. Nauk, 78:4(472) (2023),  201–202
  4. On the Convergence of Negative-Order Cesàro Means of Fourier and Fourier–Walsh Series

    Mat. Zametki, 112:3 (2022),  474–477
  5. On universal Fourier series in the Walsh system

    Sibirsk. Mat. Zh., 63:5 (2022),  1035–1051
  6. On Almost Universal Double Fourier Series

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022),  91–102
  7. On the existence and structure of universal functions

    Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021),  30–33
  8. Functions universal with respect to the trigonometric system

    Izv. RAN. Ser. Mat., 85:2 (2021),  73–94
  9. On universal Fourier–Walsh series

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 200 (2021),  45–57
  10. On unconditional and absolute convergence of the Haar series in the metric of $L^{p}[0,1]$ with $0<p<1$

    Sibirsk. Mat. Zh., 62:4 (2021),  747–757
  11. Universal Fourier Series

    Mat. Zametki, 108:2 (2020),  296–299
  12. Functions with universal Fourier-Walsh series

    Mat. Sb., 211:6 (2020),  107–131
  13. Absolute convergence of the double fourier–franklin series

    Sibirsk. Mat. Zh., 61:3 (2020),  513–527
  14. On the uniform convergence of double Furier–Walsh series

    Proceedings of the YSU, Physical and Mathematical Sciences, 54:1 (2020),  20–28
  15. The structure of universal functions for $L^p$-spaces, $p\in(0,1)$

    Mat. Sb., 209:1 (2018),  37–57
  16. The Fourier–Faber–Schauder series unconditionally divergent in measure

    Sibirsk. Mat. Zh., 59:5 (2018),  1057–1065
  17. On the absolute convergence of Fourier–Haar series in the metric of $L^p(0,1)$, $0<p<1$

    Zap. Nauchn. Sem. POMI, 467 (2018),  34–54
  18. Universal functions in ‘correction’ problems guaranteeing the convergence of Fourier–Walsh series

    Izv. RAN. Ser. Mat., 80:6 (2016),  65–91
  19. On existence of a universal function for $L^p[0,1]$ with $p\in(0,1)$

    Sibirsk. Mat. Zh., 57:5 (2016),  1021–1035
  20. Convergence of Fourier series in classical systems

    Mat. Sb., 206:7 (2015),  55–94
  21. Nonlinear approximation of functions from the class $L^r$ with respect to the Vilenkin system

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 2,  30–39
  22. Luzin's Correction Theorem and the Coefficients of Fourier Expansions in the Faber–Schauder System

    Mat. Zametki, 93:2 (2013),  172–178
  23. Modifications of functions, Fourier coefficients and nonlinear approximation

    Mat. Sb., 203:3 (2012),  49–78
  24. On the strengthened $L^1$-greedy property of the Walsh system

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5,  26–37
  25. Non-linear approximation of continuous functions by the Faber-Schauder system

    Mat. Sb., 199:5 (2008),  3–26
  26. On the $L^p_\mu$-strong property of orthonormal systems

    Mat. Sb., 194:10 (2003),  77–106
  27. On an orthonormal system

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 4,  24–28
  28. On the representation of functions by series of Legandre polynomials in weighted $L_\mu^q [-1, 1]$ spaces

    Proceedings of the YSU, Physical and Mathematical Sciences, 2001, no. 1,  136–138
  29. On universality systems in $L^p$, $1\leq p<2$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 5,  19–22
  30. On some properties of orthogonal systems

    Izv. RAN. Ser. Mat., 57:5 (1993),  75–105
  31. On certain properties of orthogonal systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 10,  80–82
  32. Convergence of Fourier–Laplace series in the $L^p$ metric

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 2,  17–23
  33. The almost everywhere convergence of fourier series according to complete orthonormal systems

    Mat. Zametki, 51:5 (1992),  35–43
  34. Convergence of Laplace and Fourier series

    Dokl. Akad. Nauk SSSR, 315:2 (1990),  265–266
  35. Convergence of Fourier-Walsh series in the $L^1$ metric and almost everywhere

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 11,  9–18
  36. On convergence of Fourier series in complete orthonormal systems in the $L^1$-metric and almost everywhere

    Mat. Sb., 181:8 (1990),  1011–1030
  37. The representation of measurable functions by usual and multiple series of Legendre polynomials

    Proceedings of the YSU, Physical and Mathematical Sciences, 1988, no. 1,  143–146


© Steklov Math. Inst. of RAS, 2024