|
|
Publications in Math-Net.Ru
-
Local invariants of noncommutative tori
Algebra i Analiz, 35:2 (2023), 174–225
-
Connes integration formula: a constructive approach
Funktsional. Anal. i Prilozhen., 57:1 (2023), 52–76
-
A solution to the multidimensional additive homological equation
Izv. RAN. Ser. Mat., 87:2 (2023), 3–55
-
Solomyak-type eigenvalue estimates for the Birman-Schwinger operator
Mat. Sb., 213:9 (2022), 97–137
-
Isometries on noncommutative symmetric spaces
Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 64–67
-
Estimates for Schur Multipliers and Double Operator Integrals—A Wavelet Approach
Funktsional. Anal. i Prilozhen., 55:2 (2021), 5–20
-
Geometry of Banach limits and their applications
Uspekhi Mat. Nauk, 75:4(454) (2020), 153–194
-
The main classes of invariant Banach limits
Izv. RAN. Ser. Mat., 83:1 (2019), 140–167
-
Derivations on Murray–von Neumann algebras
Uspekhi Mat. Nauk, 74:5(449) (2019), 183–184
-
Derivations on Banach $*$-ideals in von Neumann algebras
Vladikavkaz. Mat. Zh., 20:2 (2018), 23–28
-
Trace theorem for quasi-Fuchsian groups
Mat. Sb., 208:10 (2017), 59–90
-
Order and geometric properties of the set of Banach limits
Algebra i Analiz, 28:3 (2016), 3–35
-
Geometric properties of the set of Banach limits
Izv. RAN. Ser. Mat., 78:3 (2014), 177–204
-
Commutator Estimates in von Neumann Algebras
Funktsional. Anal. i Prilozhen., 47:1 (2013), 77–79
-
On the A. M. Bikchentaev conjecture
Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 6, 67–70
-
Schur Multipliers Associated with Symmetric Sequence Spaces
Mat. Zametki, 92:6 (2012), 939–942
-
Lipschitz Functions, Schatten Ideals, and Unbounded Derivations
Funktsional. Anal. i Prilozhen., 45:2 (2011), 93–96
-
Notes on Derivations on Algebras of Measurable Operators
Mat. Zametki, 87:4 (2010), 502–513
-
Independent functions and the geometry of Banach spaces
Uspekhi Mat. Nauk, 65:6(396) (2010), 3–86
-
Measure Theory in Noncommutative Spaces
SIGMA, 6 (2010), 072, 36 pp.
-
Characteristic functions of Banach limits
Sibirsk. Mat. Zh., 51:4 (2010), 904–910
-
Kruglov Operator and Operators Defined by Random Permutations
Funktsional. Anal. i Prilozhen., 43:2 (2009), 3–18
-
Interpolation of Positive Operators
Mat. Zametki, 81:1 (2007), 43–58
-
Series of independent mean zero random variables in rearrangement invariant spaces with the Kruglov property
Zap. Nauchn. Sem. POMI, 345 (2007), 25–50
-
Estimation of a quadratic function and the $p$-Banach–Saks property
Algebra i Analiz, 18:4 (2006), 185–197
-
Sums of independent functions in symmetric spaces with the Kruglov property
Mat. Zametki, 80:4 (2006), 630–635
-
Dixmier traces and some applications in non-commutative geometry
Uspekhi Mat. Nauk, 61:6(372) (2006), 45–110
-
Connes-Dixmier Traces, Singular Symmetric Functionals, and the Notion of Connes Measurable Element
Mat. Zametki, 77:5 (2005), 727–732
-
The Banach-Saks property
Vladikavkaz. Mat. Zh., 7:3 (2005), 64–70
-
Connes–Dixmier Traces, Singular Symmetric Functionals, and Measurable Elements in the Sense of Connes
Mat. Zametki, 76:6 (2004), 948–953
-
Comparison of Sums of Independent and Disjoint Functions in Symmetric Spaces
Mat. Zametki, 76:4 (2004), 483–489
-
Derivations in Commutative Regular Algebras
Mat. Zametki, 75:3 (2004), 453–454
-
The Banach–Saks index
Mat. Sb., 195:2 (2004), 117–140
-
Singular symmetric functionals and Banach limits with additional invariance properties
Izv. RAN. Ser. Mat., 67:6 (2003), 111–136
-
Singular symmetric functionals
Zap. Nauchn. Sem. POMI, 290 (2002), 42–71
-
Harmonic analysis in (UMD)-spaces: Applications to the theory of bases
Mat. Zametki, 58:6 (1995), 890–905
-
Harmonic analysis in symmetric spaces of measurable operators
Dokl. Akad. Nauk, 339:3 (1994), 307–310
-
Kadets–Klee properties and local uniform convexity in interpolation spaces of the $K$-method
Dokl. Akad. Nauk, 338:6 (1994), 736–739
-
The Matsaev theorem for symmetric spaces of measurable operators
Mat. Zametki, 56:5 (1994), 129–135
-
$\operatorname{RUC}$-bases in $E(L_\infty\overline\otimes B(H))$ and $F(C_E)$
Mat. Zametki, 56:1 (1994), 88–104
-
The property (MLUR) in symmetric (KB)-spaces
Mat. Zametki, 52:6 (1992), 149–151
-
Uniform convexity and local uniform convexity of symmetric spaces
of measurable operators
Dokl. Akad. Nauk SSSR, 317:3 (1991), 555–558
-
Symmetric spaces over semifinite von Neumann algebras
Dokl. Akad. Nauk SSSR, 313:4 (1990), 811–815
-
Convergence in measure in regular noncommutative symmetric spaces
Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 9, 63–70
-
Description of closed convex symmetric sets of measurable operators
Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 10, 31–37
© , 2025