RUS  ENG
Full version
PEOPLE

Sukochev Fedor Anatol'evich

Publications in Math-Net.Ru

  1. Local invariants of noncommutative tori

    Algebra i Analiz, 35:2 (2023),  174–225
  2. Connes integration formula: a constructive approach

    Funktsional. Anal. i Prilozhen., 57:1 (2023),  52–76
  3. A solution to the multidimensional additive homological equation

    Izv. RAN. Ser. Mat., 87:2 (2023),  3–55
  4. Solomyak-type eigenvalue estimates for the Birman-Schwinger operator

    Mat. Sb., 213:9 (2022),  97–137
  5. Isometries on noncommutative symmetric spaces

    Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021),  64–67
  6. Estimates for Schur Multipliers and Double Operator Integrals—A Wavelet Approach

    Funktsional. Anal. i Prilozhen., 55:2 (2021),  5–20
  7. Geometry of Banach limits and their applications

    Uspekhi Mat. Nauk, 75:4(454) (2020),  153–194
  8. The main classes of invariant Banach limits

    Izv. RAN. Ser. Mat., 83:1 (2019),  140–167
  9. Derivations on Murray–von Neumann algebras

    Uspekhi Mat. Nauk, 74:5(449) (2019),  183–184
  10. Derivations on Banach $*$-ideals in von Neumann algebras

    Vladikavkaz. Mat. Zh., 20:2 (2018),  23–28
  11. Trace theorem for quasi-Fuchsian groups

    Mat. Sb., 208:10 (2017),  59–90
  12. Order and geometric properties of the set of Banach limits

    Algebra i Analiz, 28:3 (2016),  3–35
  13. Geometric properties of the set of Banach limits

    Izv. RAN. Ser. Mat., 78:3 (2014),  177–204
  14. Commutator Estimates in von Neumann Algebras

    Funktsional. Anal. i Prilozhen., 47:1 (2013),  77–79
  15. On the A. M. Bikchentaev conjecture

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 6,  67–70
  16. Schur Multipliers Associated with Symmetric Sequence Spaces

    Mat. Zametki, 92:6 (2012),  939–942
  17. Lipschitz Functions, Schatten Ideals, and Unbounded Derivations

    Funktsional. Anal. i Prilozhen., 45:2 (2011),  93–96
  18. Notes on Derivations on Algebras of Measurable Operators

    Mat. Zametki, 87:4 (2010),  502–513
  19. Independent functions and the geometry of Banach spaces

    Uspekhi Mat. Nauk, 65:6(396) (2010),  3–86
  20. Measure Theory in Noncommutative Spaces

    SIGMA, 6 (2010), 072, 36 pp.
  21. Characteristic functions of Banach limits

    Sibirsk. Mat. Zh., 51:4 (2010),  904–910
  22. Kruglov Operator and Operators Defined by Random Permutations

    Funktsional. Anal. i Prilozhen., 43:2 (2009),  3–18
  23. Interpolation of Positive Operators

    Mat. Zametki, 81:1 (2007),  43–58
  24. Series of independent mean zero random variables in rearrangement invariant spaces with the Kruglov property

    Zap. Nauchn. Sem. POMI, 345 (2007),  25–50
  25. Estimation of a quadratic function and the $p$-Banach–Saks property

    Algebra i Analiz, 18:4 (2006),  185–197
  26. Sums of independent functions in symmetric spaces with the Kruglov property

    Mat. Zametki, 80:4 (2006),  630–635
  27. Dixmier traces and some applications in non-commutative geometry

    Uspekhi Mat. Nauk, 61:6(372) (2006),  45–110
  28. Connes-Dixmier Traces, Singular Symmetric Functionals, and the Notion of Connes Measurable Element

    Mat. Zametki, 77:5 (2005),  727–732
  29. The Banach-Saks property

    Vladikavkaz. Mat. Zh., 7:3 (2005),  64–70
  30. Connes–Dixmier Traces, Singular Symmetric Functionals, and Measurable Elements in the Sense of Connes

    Mat. Zametki, 76:6 (2004),  948–953
  31. Comparison of Sums of Independent and Disjoint Functions in Symmetric Spaces

    Mat. Zametki, 76:4 (2004),  483–489
  32. Derivations in Commutative Regular Algebras

    Mat. Zametki, 75:3 (2004),  453–454
  33. The Banach–Saks index

    Mat. Sb., 195:2 (2004),  117–140
  34. Singular symmetric functionals and Banach limits with additional invariance properties

    Izv. RAN. Ser. Mat., 67:6 (2003),  111–136
  35. Singular symmetric functionals

    Zap. Nauchn. Sem. POMI, 290 (2002),  42–71
  36. Harmonic analysis in (UMD)-spaces: Applications to the theory of bases

    Mat. Zametki, 58:6 (1995),  890–905
  37. Harmonic analysis in symmetric spaces of measurable operators

    Dokl. Akad. Nauk, 339:3 (1994),  307–310
  38. Kadets–Klee properties and local uniform convexity in interpolation spaces of the $K$-method

    Dokl. Akad. Nauk, 338:6 (1994),  736–739
  39. The Matsaev theorem for symmetric spaces of measurable operators

    Mat. Zametki, 56:5 (1994),  129–135
  40. $\operatorname{RUC}$-bases in $E(L_\infty\overline\otimes B(H))$ and $F(C_E)$

    Mat. Zametki, 56:1 (1994),  88–104
  41. The property (MLUR) in symmetric (KB)-spaces

    Mat. Zametki, 52:6 (1992),  149–151
  42. Uniform convexity and local uniform convexity of symmetric spaces of measurable operators

    Dokl. Akad. Nauk SSSR, 317:3 (1991),  555–558
  43. Symmetric spaces over semifinite von Neumann algebras

    Dokl. Akad. Nauk SSSR, 313:4 (1990),  811–815
  44. Convergence in measure in regular noncommutative symmetric spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 9,  63–70
  45. Description of closed convex symmetric sets of measurable operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 10,  31–37


© Steklov Math. Inst. of RAS, 2025