RUS  ENG
Full version
PEOPLE

Shvetsov Gennadii Anatol'evich

Publications in Math-Net.Ru

  1. Joule heating of a shaped-charge jet formed by the collapse of a conical metal liner in a magnetic field

    Prikl. Mekh. Tekh. Fiz., 65:6 (2024),  3–13
  2. High-power pulse magnetic hydrodynamic generator fueled by a solid (powder) propellant of a new generation

    Prikl. Mekh. Tekh. Fiz., 59:6 (2018),  75–87
  3. Energy storage device for electromagnetic launchers of solids

    Prikl. Mekh. Tekh. Fiz., 59:5 (2018),  109–114
  4. Thermal limitations in a rapid-fire multirail launcher powered by a pulsed magnetodhydrodynamic generator

    Prikl. Mekh. Tekh. Fiz., 58:5 (2017),  131–141
  5. Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator

    Prikl. Mekh. Tekh. Fiz., 56:5 (2015),  91–101
  6. Effect of electric current on the depth of penetration of shaped-charge jets into targets

    Prikl. Mekh. Tekh. Fiz., 56:1 (2015),  150–161
  7. Ultimate kinematic characteristics of rail electromagnetic launchers with metal armatures in an external magnetic field

    Prikl. Mekh. Tekh. Fiz., 55:5 (2014),  14–20
  8. Effect of the shape of metal solids on the rate of their Joule heating in electromagnetic rail launchers

    Prikl. Mekh. Tekh. Fiz., 50:2 (2009),  205–216
  9. On the possibility of reducing the penetration capability of shaped-charge jets in a magnetic field

    Prikl. Mekh. Tekh. Fiz., 48:3 (2007),  112–120
  10. Disruption of shaped-charge jets by a pulsed current

    Prikl. Mekh. Tekh. Fiz., 45:2 (2004),  147–155
  11. On analysis of physical processes on the electrode surface in a rail launcher

    Prikl. Mekh. Tekh. Fiz., 43:3 (2002),  39–44
  12. Ultimate kinematic characteristics of composite solids accelerated by a magnetic field

    Prikl. Mekh. Tekh. Fiz., 43:3 (2002),  15–23
  13. Possibilities of controlling the shaped–charge effect by electromagnetic actions

    Fizika Goreniya i Vzryva, 36:6 (2000),  126–145
  14. Behavior of metallic shaped-charge jets with passage of a pulsed electric current through them

    Prikl. Mekh. Tekh. Fiz., 41:3 (2000),  19–25
  15. Analysis of the ultimate kinematic characteristics of railgun accelerators of solids

    Prikl. Mekh. Tekh. Fiz., 40:2 (1999),  156–162
  16. Use of magnetocumulative generators in experiments on current disruption of shaped-charge jets

    Prikl. Mekh. Tekh. Fiz., 39:3 (1998),  30–35
  17. Megagauss magnetic fields. Physics. Techniques. Applications

    Prikl. Mekh. Tekh. Fiz., 38:4 (1997),  90–102
  18. Experimental investigation of current instability of shaped-charge jets

    Prikl. Mekh. Tekh. Fiz., 37:4 (1996),  9–14
  19. Modification of metal surfaces by means of a high-velocity plasma

    Fizika Goreniya i Vzryva, 31:6 (1995),  99–105
  20. Critical current density in railgun accelerators with composite electrodes

    Prikl. Mekh. Tekh. Fiz., 36:3 (1995),  10–17
  21. Ultimate velocities of plates accelerated by magnetic field

    Prikl. Mekh. Tekh. Fiz., 35:3 (1994),  13–22
  22. Structure and dynamics of a plasma piston in rail-gun accelerators for solid objects

    Prikl. Mekh. Tekh. Fiz., 30:2 (1989),  145–150
  23. Measurement of the brightness temperature of a plasma piston in railguns

    Prikl. Mekh. Tekh. Fiz., 29:6 (1988),  33–34
  24. Critical current density in rail accelerators with a plasma piston

    Prikl. Mekh. Tekh. Fiz., 29:1 (1988),  20–27
  25. High-speed launching of solid bodies

    Fizika Goreniya i Vzryva, 23:5 (1987),  77–91
  26. Explosive plasma injectors in the study of circumterrestrial space

    Fizika Goreniya i Vzryva, 23:3 (1987),  112–120
  27. General energy relations for rail guns

    Prikl. Mekh. Tekh. Fiz., 28:2 (1987),  166–171
  28. Explosive-magnetic generators as power sources for railgun accelerators of solid projectiles

    Fizika Goreniya i Vzryva, 22:4 (1986),  76–82
  29. Operation of a railgun accelerator for solid projectiles powered from an explosive MHD generator

    Fizika Goreniya i Vzryva, 20:3 (1984),  111–115
  30. Conversion of chemical energy in an explosive by a magnetohydrodynamic method

    Fizika Goreniya i Vzryva, 18:5 (1982),  3–20
  31. Investigations and certain applications of explosive shock tubes

    Fizika Goreniya i Vzryva, 18:3 (1982),  84–90
  32. Possibilities of an explosive MHD generator as an energy source for a plasma focus

    Prikl. Mekh. Tekh. Fiz., 22:3 (1981),  81–86
  33. Generation of high-frequency electrical pulses by means of a shaped-charge explosion

    Fizika Goreniya i Vzryva, 16:5 (1980),  47–56
  34. Coaxial, explosive-type MHD generator

    Fizika Goreniya i Vzryva, 13:1 (1977),  130–132
  35. Energetic characteristics of pulsed MHD systems

    Fizika Goreniya i Vzryva, 11:3 (1975),  433–437
  36. Motion of a conductive piston in a channel with variable inductance

    Prikl. Mekh. Tekh. Fiz., 14:6 (1973),  41–46
  37. Study of high-velocity gas flows by electromagnetic means

    Prikl. Mekh. Tekh. Fiz., 12:3 (1971),  137–140
  38. A high-velocity strike of a solid against rock

    Dokl. Akad. Nauk SSSR, 191:2 (1970),  298–300
  39. Laboratory methods of launching projectiles by means of shaped charges

    Fizika Goreniya i Vzryva, 6:3 (1970),  401–404


© Steklov Math. Inst. of RAS, 2025