RUS  ENG
Full version
PEOPLE

Lapshin Oleg Valentinovich

Publications in Math-Net.Ru

  1. Thermal explosion in a powder mixture of aluminum with nickel preactivated in a low-energy laboratory mill

    Fizika Goreniya i Vzryva, 60:1 (2024),  110–117
  2. Synthesis of titanium nitride during double mechanical activation of titanium: in argon and in nitrogen

    Fizika Goreniya i Vzryva, 60:1 (2024),  92–99
  3. Two-stage mechanochemical synthesis of niobium silicides during layer-by-layer combustion

    Fizika Goreniya i Vzryva, 59:1 (2023),  77–84
  4. Mathematical simulation of volume and wave gas-free combustion in a hybrid mixture of activated and inactivated powders

    Fizika Goreniya i Vzryva, 57:4 (2021),  80–92
  5. Mathemathical simulation of the combustion of a mechanically activated $3\mathrm{Ni}+\mathrm{Al}$ mixture

    Fizika Goreniya i Vzryva, 55:1 (2019),  120–127
  6. Macrokinetics of combustion of layered compositions with a low-melting inert layer

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 52,  102–113
  7. Simulation of thermal explosion of a pre-activated $3\mathrm{Ni}+\mathrm{Al}$ mixture

    Fizika Goreniya i Vzryva, 53:5 (2017),  64–69
  8. Mathematical modeling of the thermal explosion in mechanically activated SiO$_2$ + Al mixtures

    Fizika Goreniya i Vzryva, 52:2 (2016),  106–111
  9. On the theory of multiple repetitions of a nonisothermal wave process

    Fizika Goreniya i Vzryva, 51:5 (2015),  66–69
  10. Theory of combustion of thin film structures

    Fizika Goreniya i Vzryva, 49:6 (2013),  47–52
  11. Modeling the synthesis of mechanocomposites in binary systems

    Fizika Goreniya i Vzryva, 47:5 (2011),  63–74
  12. Thermal explosion in mechanically activated heterogeneous systems

    Fizika Goreniya i Vzryva, 47:3 (2011),  74–83
  13. Effect of phase transformation on nonisothermal synthesis in mechanically activated heterogeneous systems

    Fizika Goreniya i Vzryva, 45:1 (2009),  56–67
  14. Formation of the granular structure in the intermetallic compound Ni$_3$Al in high-temperature synthesis under compression

    Fizika Goreniya i Vzryva, 42:3 (2006),  64–70
  15. Macrokinetics of mechanosynthesis in solid-gas systems. II. Experimental studies. Analysis of results

    Fizika Goreniya i Vzryva, 41:5 (2005),  92–99
  16. Macrokinetics of mechanosynthesis in solid-gas systems. I. Mathematical simulation

    Fizika Goreniya i Vzryva, 41:5 (2005),  78–91
  17. Thermokinetic characteristics of the final stage of the thermal shock of the 3Ni + Al + TiC powder mixture

    Fizika Goreniya i Vzryva, 41:1 (2005),  73–80
  18. Nonisothermal interaction of powders with a reactive gaseous medium during grinding

    Fizika Goreniya i Vzryva, 39:6 (2003),  56–68
  19. Self-propagating high-temperature synthesis of a Ni$_3$Al intermetallic compound under compression

    Fizika Goreniya i Vzryva, 38:6 (2002),  71–75
  20. Thermokinetic and thermal-physics parameters of high-temperature synthesis of intermetallide Ni$_3$Al by thermal shock of a powder mixture of pure elements

    Fizika Goreniya i Vzryva, 38:4 (2002),  59–64
  21. Formation of the macroscopic structure of the product of SHS under compaction

    Fizika Goreniya i Vzryva, 38:2 (2002),  26–35
  22. Effect of the heating stage on ignition conditions of a nickel-aluminum powder mixture

    Fizika Goreniya i Vzryva, 36:5 (2000),  22–26
  23. High-temperature synthesis of a tungsten-free cermet

    Fizika Goreniya i Vzryva, 35:5 (1999),  60–64
  24. Effect of an inert filler on the ignition conditions of a powder mixture of nickel and aluminum

    Fizika Goreniya i Vzryva, 34:1 (1998),  31–33
  25. A mathematical model of high-temperature synthesis of nickel aluminide Ni$_3$Al by thermal shock of a powder mixture of pure elements

    Fizika Goreniya i Vzryva, 32:3 (1996),  68–76
  26. A mathematical model of high-temperature synthesis of the intermetallic compound Ni$_3$Al during ignition

    Fizika Goreniya i Vzryva, 32:2 (1996),  46–54


© Steklov Math. Inst. of RAS, 2024