RUS  ENG
Full version
PEOPLE

Rau Valerii Georgievich

Publications in Math-Net.Ru

  1. Method of discrete modelling of packing in molecular crystals

    Dokl. Akad. Nauk SSSR, 315:6 (1990),  1382–1385
  2. Crystal structure of $[\mathrm{Cr}(\mathrm{OCN}_2\mathrm{H}_4)_6][\mathrm{Pt}(\mathrm{OH})\mathrm{Cl}_5](\mathrm{ClO}_4)\mathrm{H}_2\mathrm{O}$

    Dokl. Akad. Nauk SSSR, 300:6 (1988),  1372–1374
  3. Crystal structure of $[\mathrm{Cr}(\mathrm{OCN}_2\mathrm{H}_4)_6](\mathrm{Cr}_2\mathrm{O}_7)\mathrm{ClH}_2\mathrm{O}$

    Dokl. Akad. Nauk SSSR, 279:2 (1984),  373–377
  4. Crystal structure of $[\mathrm{Cr}(\mathrm{OCN}_2\mathrm{H}_4)_6] [\mathrm{Co}(\mathrm{NH}_3)_2(\mathrm{NO}_2)_4]_3\cdot0{,}5\mathrm{CCl}_4\cdot1{,}5\mathrm{H}_2\mathrm{O}$

    Dokl. Akad. Nauk SSSR, 267:6 (1982),  1371–1373
  5. Structural investigation of the complex compound $[\mathrm{Cr}(\mathrm{OCN}_2\mathrm{H}_4)_6] [\mathrm{Co}(\mathrm{DH})_2(\mathrm{NO}_2)_2]_2\cdot0{,}5\mathrm{J}_3^-\cdot0{,}5\mathrm{X}^-\cdot n\mathrm{H}_2\mathrm{O}$

    Dokl. Akad. Nauk SSSR, 267:5 (1982),  1128–1131
  6. Generalized probability approach to the Fourier special synthesis ($\beta$-synthesis)

    Dokl. Akad. Nauk SSSR, 267:2 (1982),  386–388
  7. Simple criteria of existence of Cochren cyclotomic sets

    Dokl. Akad. Nauk SSSR, 267:1 (1982),  91–94
  8. On some features of cyclotomic Patterson sets

    Dokl. Akad. Nauk SSSR, 265:2 (1982),  336–339
  9. On a criterion of the belonging of a structure to homometric set

    Dokl. Akad. Nauk SSSR, 265:1 (1982),  80–83
  10. Cochren cyclotomic sets with the period divisible by $3$

    Dokl. Akad. Nauk SSSR, 264:6 (1982),  1389–1391
  11. Necessary conditions of the existence of some Cochren cyclotomic sets with the equal multiplicity

    Dokl. Akad. Nauk SSSR, 264:5 (1982),  1143–1145
  12. Isovector structures with two-dimensional networks

    Dokl. Akad. Nauk SSSR, 258:3 (1981),  619–623
  13. On homometric solutions of incomplete Patterson function

    Dokl. Akad. Nauk SSSR, 257:4 (1981),  876–879
  14. A probability approach to Cochran structures

    Dokl. Akad. Nauk SSSR, 256:6 (1981),  1383–1386
  15. Deciphering of the crystal structure of $\mathrm{C}_{20}\mathrm{H}_{21}\mathrm{NO}_5\mathrm{S}$ following the incomplete Patterson function

    Dokl. Akad. Nauk SSSR, 256:1 (1981),  85–89
  16. On the calculation of possible Patterson cyclotomic sets

    Dokl. Akad. Nauk SSSR, 255:5 (1980),  1110–1113
  17. On the calculation of Patterson cyclotomic sets

    Dokl. Akad. Nauk SSSR, 255:4 (1980),  859–862
  18. Crystal structure of $[\mathrm{Cr}(\mathrm{OCN}_2\mathrm{H}_4)_6] [\mathrm{Co}(\mathrm{NH}_3)_2(\mathrm{NO}_2)_4]_2[\mathrm{Co}(\mathrm{DH})_2(\mathrm{NO}_2)_2]$

    Dokl. Akad. Nauk SSSR, 255:3 (1980),  569–572
  19. On incomplete Patterson function

    Dokl. Akad. Nauk SSSR, 254:6 (1980),  1400–1403
  20. Crystal structure of $\mathrm{Cd}(\mathrm{CH}_3\mathrm{COO})_2\cdot\mathrm{CSN}_2\mathrm{H}_4$

    Dokl. Akad. Nauk SSSR, 250:4 (1980),  852–854
  21. Probability approach to the Fourier special synthesis ($\alpha$-synthesis)

    Dokl. Akad. Nauk SSSR, 250:3 (1980),  620–622
  22. Isovector structures of pseudo symmetric crystals. Theory of isovector structures. Distance groups and isovector structures

    Dokl. Akad. Nauk SSSR, 249:3 (1979),  611–613
  23. Geometric and analytic aspects of the connection between main and vector systems of points for isovector structures

    Dokl. Akad. Nauk SSSR, 248:5 (1979),  1114–1116
  24. Search algorithm of homometric sets of periodic structures

    Dokl. Akad. Nauk SSSR, 248:2 (1979),  363–365
  25. Identification of double maxima of Patterson function. Space group $P\bar1$

    Dokl. Akad. Nauk SSSR, 240:2 (1978),  324–326
  26. Symbolic method of Patterson vector identification in centrosymmetric crystals

    Dokl. Akad. Nauk SSSR, 232:4 (1977),  806–809
  27. Identification of maxima of Patterson function having multiple peaks

    Dokl. Akad. Nauk SSSR, 229:1 (1976),  88–91
  28. On a symbolic method of Patterson vector identification

    Dokl. Akad. Nauk SSSR, 220:4 (1975),  837–840
  29. Crystalline structure of simanite, $\mathrm{Mn}_3[\mathrm{PO}_4/ \mathrm{BO}_3]\cdot3\mathrm{H}_2\mathrm{O}= \mathrm{Mn}_3[\mathrm{PO}_3\mathrm{OH}][\mathrm{BO}(\mathrm{OH}_3)](\mathrm{OH})_2$

    Dokl. Akad. Nauk SSSR, 197:5 (1971),  1070–1073


© Steklov Math. Inst. of RAS, 2024