|
|
Publications in Math-Net.Ru
-
Behavior singularities of the simplest nonlinear elasticity models constructed on the basis of new holonomic tensor measures
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 5, 40–47
-
Inertial reference frames for subsystems of deformable bodies
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 6, 44–50
-
Approaches to modeling the properties of complex structure materials
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 1, 41–45
-
A generalized theory of tensor strain and stress measures in the classical continuum mechanics
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 5, 46–57
-
General resulting forms of constitutive relations in the classical continuum mechanics
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 2, 67–71
-
Models and problems for saturated porous media
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2010, no. 6, 33–44
-
Stability of forced torsional vibrations of an equipped rod
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2010, no. 1, 57–62
-
Using continuous models in the analysis of vibrational spectra for carbon nanotubes
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2009, no. 4, 53–56
-
A model of inhomogeneous liquid-gas-saturated medium with a deformable solid frame
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 5, 45–52
-
Modeling of nonhomogeneous mediums of complex structure and Cosserat continuum
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 5, 55–63
-
About definitive experiments for models of nonlinear elastic bodies under finite deformations
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 4, 45–49
-
On a plane model of perforated plates
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 2, 83–91
-
A family of holonomic tensor measures of deformations and stresses
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 4, 86–91
-
“Lagrangian”' and “Eulerian” forms of constitutive relations of deformable solid bodies
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1990, no. 1, 73–78
-
The concepts of a process image and of five-dimensional isotropy
of material properties under finite deformations
Dokl. Akad. Nauk SSSR, 308:3 (1989), 565–570
-
A method of successive approximations in a class of problems of the general theory of plasticity
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 6, 76–83
-
Variational principles in the theory of small-curvature elastoplastic processes
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 3, 82–85
-
To memory of Rudolf Alekseevich Vasin (1937–2019)
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 5, 71–72
© , 2024