RUS  ENG
Full version
PEOPLE

Mazalov Maksim Yakovlevich

Publications in Math-Net.Ru

  1. Criteria for $C^m$-approximability of functions by solutions of homogeneous second-order elliptic equations on compact subsets of $\mathbb{R}^N$ and related capacities

    Uspekhi Mat. Nauk, 79:5(479) (2024),  101–177
  2. Capacities commensurable with harmonic ones

    Mat. Sb., 215:2 (2024),  120–146
  3. On $\gamma_{{\mathcal L}}$-capacities of Cantor sets

    Algebra i Analiz, 35:5 (2023),  171–182
  4. Commensurability of some capacities with harmonic capacities

    Uspekhi Mat. Nauk, 78:5(473) (2023),  183–184
  5. On the Dirichlet problem for not strongly elliptic second-order equations

    Uspekhi Mat. Nauk, 77:2(464) (2022),  197–198
  6. Approximation by polyanalytic functions in Hölder spaces

    Algebra i Analiz, 33:5 (2021),  125–152
  7. Uniform approximation of functions by solutions of second order homogeneous strongly elliptic equations on compact sets in ${\mathbb{R}}^2$

    Izv. RAN. Ser. Mat., 85:3 (2021),  89–126
  8. A criterion for uniform approximability of individual functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients

    Mat. Sb., 211:9 (2020),  60–104
  9. On Bianalytic Capacities

    Mat. Zametki, 103:4 (2018),  635–640
  10. On Nevanlinna domains with fractal boundaries

    Algebra i Analiz, 29:5 (2017),  90–110
  11. On the existence of angular boundary values for polyharmonic functions in the unit ball

    Zap. Nauchn. Sem. POMI, 456 (2017),  144–154
  12. An example of a non-rectifiable Nevanlinna contour

    Algebra i Analiz, 27:4 (2015),  50–58
  13. Criteria for $C^m$-approximability by bianalytic functions on planar compact sets

    Mat. Sb., 206:2 (2015),  77–118
  14. Conditions for $C^m$-approximability of functions by solutions of elliptic equations

    Uspekhi Mat. Nauk, 67:6(408) (2012),  53–100
  15. Criterion of uniform approximability by harmonic functions on compact sets in $\mathbb R^3$

    Trudy Mat. Inst. Steklova, 279 (2012),  120–165
  16. On uniform approximability by solutions of elliptic equations of order higher than two

    Ufimsk. Mat. Zh., 4:4 (2012),  108–118
  17. A criterion for approximability by harmonic functions in Lipschitz spaces

    Zap. Nauchn. Sem. POMI, 401 (2012),  144–171
  18. Uniform approximation problem for harmonic functions

    Algebra i Analiz, 23:4 (2011),  136–178
  19. Uniform approximation by harmonic functions on compact subsets of $\mathbb R^3$

    Zap. Nauchn. Sem. POMI, 389 (2011),  162–190
  20. The Dirichlet problem for polyanalytic functions

    Mat. Sb., 200:10 (2009),  59–80
  21. A criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations

    Mat. Sb., 199:1 (2008),  15–46
  22. Uniform approximations by bianalytic functions on arbitrary compact subsets of $\mathbb C$

    Mat. Sb., 195:5 (2004),  79–102
  23. Uniform Approximation of Functions Continuous on a Compact Subset of $\mathbb C$ and Analytic in Its Interior by Functions Bianalytic in Its Neighborhoods

    Mat. Zametki, 69:2 (2001),  245–261
  24. An example of a nonconstant bianalytic function vanishing everywhere on a nowhere analytic boundary

    Mat. Zametki, 62:4 (1997),  629–632


© Steklov Math. Inst. of RAS, 2025