RUS  ENG
Full version
PEOPLE

Arsent'ev Ivan Nikitich

Publications in Math-Net.Ru

  1. Properties of compliant porous silicon-based substrates formed by two-stage etching

    Fizika i Tekhnika Poluprovodnikov, 55:11 (2021),  1021–1026
  2. Effect of pretreatment of the silicon substrate on the properties of GaN films grown by chloride–hydride vapor-phase epitaxy

    Fizika i Tekhnika Poluprovodnikov, 55:8 (2021),  704–710
  3. Structural and spectroscopic studies of epitaxial GaAs layers grown on compliant substrates based on a superstructure layer and protoporous silicon

    Fizika i Tekhnika Poluprovodnikov, 55:1 (2021),  86–95
  4. Spectroscopic studies of integrated GaAs/Si heterostructures

    Fizika i Tekhnika Poluprovodnikov, 55:1 (2021),  34–40
  5. Influence of a nanoporous silicon layer on the practical implementation and specific features of the epitaxial growth of GaN layers on SiC/$por$-Si/$c$-Si templates

    Fizika i Tekhnika Poluprovodnikov, 54:5 (2020),  491–503
  6. Optical properties of GaN/SiC/$por$-Si/Si(111) hybrid heterostructures

    Fizika i Tekhnika Poluprovodnikov, 54:4 (2020),  346–354
  7. On the phase composition, morphology, and optical and electronic characteristics of AlN nanofilms grown on misoriented GaAs (100) substrates

    Fizika i Tekhnika Poluprovodnikov, 53:11 (2019),  1584–1592
  8. Structural and morphological properties of hybrid heterostructures based on gan grown on a compliant por-Si(111) substrate

    Fizika i Tekhnika Poluprovodnikov, 53:8 (2019),  1141–1151
  9. Investigation of the current–voltage characteristics of new MnO$_{2}$/GaAs(100) and V$_{2}$O$_{5}$/GaAs(100) heterostructures subjected to heat treatment

    Fizika i Tekhnika Poluprovodnikov, 53:8 (2019),  1074–1079
  10. Comprehensive study of the nanoporous si layer influence on atomic and electron structure and optical properties of A$^{\mathrm{III}}$N/por-Si heterostructures grown by plasma assisted molecular beam epitaxy

    Fizika i Tekhnika Poluprovodnikov, 53:7 (2019),  1010–1016
  11. Influence of a por-Si buffer layer on the optical properties of epitaxial In$_{x}$Ga$_{1-x}$N/Si(111) heterostructures with a nanocolumnar film morphology

    Fizika i Tekhnika Poluprovodnikov, 53:1 (2019),  70–76
  12. Electronic and optical properties of hybrid GaN/por-Si(111) heterostructures

    Kvantovaya Elektronika, 49:6 (2019),  545–551
  13. Effect of a $por$-Si buffer layer on the structure and morphology of epitaxial In$_{x}$Ga$_{1-x}$N/Si(111) heterostructures

    Fizika i Tekhnika Poluprovodnikov, 52:13 (2018),  1553–1562
  14. Effect of conditions of electrochemical etching on the morphological, structural, and optical properties of porous gallium arsenide

    Fizika i Tekhnika Poluprovodnikov, 52:9 (2018),  1041–1048
  15. Effect of misorientation and preliminary etching of the substrate on the structural and optical properties of integrated GaAs/Si(100) heterostructures produced by vapor phase epitaxy

    Fizika i Tekhnika Poluprovodnikov, 52:8 (2018),  881–890
  16. Influence of substrate misorientation on the composition and the structural and photoluminescence properties of epitaxial layers grown on GaAs(100)

    Fizika i Tekhnika Poluprovodnikov, 52:1 (2018),  118–124
  17. Experimental studies of the effects of atomic ordering in epitaxial Ga$_{x}$In$_{1-x}$P on their optical properties

    Fizika i Tekhnika Poluprovodnikov, 51:9 (2017),  1160–1167
  18. Experimental studies of the effects of atomic ordering in epitaxial Ga$_{x}$In$_{1-x}$P alloys on their structural and morphological properties

    Fizika i Tekhnika Poluprovodnikov, 51:8 (2017),  1131–1137
  19. Epitaxial Al$_{x}$Ga$_{1-x}$As : Mg alloys with different conductivity types

    Fizika i Tekhnika Poluprovodnikov, 51:1 (2017),  124–132
  20. Growth features and spectroscopic structure investigations of nanoprofiled AlN films formed on misoriented GaAs substrates

    Fizika i Tekhnika Poluprovodnikov, 50:9 (2016),  1283–1294
  21. Structural and optical properties of GaAs(100) with a thin surface layer doped with chromium

    Fizika i Tekhnika Poluprovodnikov, 50:7 (2016),  869–876
  22. SPECTRAL CHARACTERISTICS OF INGAASP/GAAS(111) LPE-LASERS (LAMBDA=0.8MU-M) DESIGNED FOR THE PUMPING OF YAG-ND3+

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 15:15 (1989),  45–49
  23. Квантово-размерные InGaAsP/GaAs (${\lambda=0.86\div0.78}$ мкм) лазеры раздельного ограничения (${J_{\text{п}}=100\,\text{А/см}^{2}}$, КПД${}=59$%)

    Fizika i Tekhnika Poluprovodnikov, 22:6 (1988),  1031–1034
  24. POWER CONTINUOUS INGAASP/GAAS HETEROLASER WITH THE DIELECTRIC MIRROR (IPOR=100A/CM2,D=1.1WATT,EFFICIENCY=66-PERCENT,T=10-DEGREES-C

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 14:8 (1988),  699–702
  25. MULTI-LAYERED STRUCTURES IN THE JN-GA-AS-P SYSTEM PREPARED BY THE LIQUID EPITAXY METHOD

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 14:7 (1988),  593–597
  26. Low-Threshold Quantum-Dimensional InGaAsP/GaAs Double-Heterostructure Lasers of Separate Limitation Produced by Liquid Epitaxy (${\lambda=0.86}$ $\mu m$, ${I_{\text{п}}=90\,\text{A/cm}^{2}}$, ${L=\infty}$; ${I_{\text{п}}=165\,\text{A/cm}^{2}}$, ${L=1150}$ $\mu m$, ${T=300}$ K)

    Fizika i Tekhnika Poluprovodnikov, 21:8 (1987),  1501–1503
  27. Quantum-Dimensional Effects in Liquid-Phase InGaAsP/GaAs Heterostructures with Active-Ran Thickness between 40 and 300 Å

    Fizika i Tekhnika Poluprovodnikov, 21:1 (1987),  178–181
  28. Quantum-Dimensional InGaAsP/GaAs Separate-Limitation Double-Heterostructure Lasers Produced by Liquid-Epitaxy Method (${\lambda=0.79}\,\mu m,$ ${I_{\text{п}}=124\,\text{A/cm}^{2}}$, ${T=300}$ K)

    Fizika i Tekhnika Poluprovodnikov, 21:1 (1987),  162–164
  29. Visible $In\,Ga\,As\,P/Ga\,As\,P$ separate confinement lasers, manufactured by the liquid epitaxy-method ($\lambda=0.65\div0.67$ mu-m, $I_n=3\div0.8\,\text{kA}/\text{cm}^{2}$; $P=5$ mVt, $\lambda=0.665$ mu-m, $T=300$ K)

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 13:6 (1987),  372–374
  30. Photoluminescence of InGaAsP/GaAs Quantum-Dimensional Heterostructures Produced by the Method of Liquid Epitaxy

    Fizika i Tekhnika Poluprovodnikov, 20:12 (1986),  2145–2149
  31. Luminescence Efficiency and Boundary-Recombination Rate in Heteroslructures in Al$-$Ga$-$As and In$-$Ga$-$As$-$P

    Fizika i Tekhnika Poluprovodnikov, 20:4 (1986),  708–712
  32. $0.677 \mu m$ – Continuous Injection InGaAsP/GaAsP DH Laser with Selective Limitation Produced by Liquid Epitaxy

    Fizika i Tekhnika Poluprovodnikov, 19:6 (1985),  1115–1118
  33. Auger Profiles of Composition and Luminescent Studies of Liquid-Phase InGaAsP Heterostructures with Active Regions ${(1.5\div5)\cdot10^{-6}}$  cm

    Fizika i Tekhnika Poluprovodnikov, 19:6 (1985),  1108–1114
  34. Continuous Separately-Limited Laser on InGaAsP/GaAs Double Heterostructures Grown by Liquid Epitay of 77 mWt Power (${T=300}$ K, ${\lambda=0.87}$ $\mu$m)

    Fizika i Tekhnika Poluprovodnikov, 19:1 (1985),  136–138
  35. Continuous short-wave ($\lambda=0,677\,\mu m$) injection-laser based on $In\,Ga\,As\,P/Ga\,As\,P$ RO DGS with $10$ mVt power

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 11:19 (1985),  1153–1157
  36. Band lasers based on PO $In\,Ga\,As\,P/Ga\,As$ DHS ($\lambda\simeq0.87\,\mu m$) with the thin active area

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 11:4 (1985),  205–209
  37. Инжекционные РО InGaAsP/InP ДГС лазеры с порогом $300\,\text{А/см}^{2}$ (четырехсколотые образцы, ${\lambda=1.25}$ мкм, ${T=300}$ K)

    Fizika i Tekhnika Poluprovodnikov, 18:11 (1984),  2057–2060
  38. Спонтанные и когерентные излучательные переходы в InGaAsP/InP ДГС с тонкой активной областью (${d_{\text{а}}=2\cdot10^{-5}\div2\cdot10^{-6}}$ см), полученные методом жидкостной эпитаксии

    Fizika i Tekhnika Poluprovodnikov, 18:11 (1984),  2041–2045
  39. Низкопороговые инжекционные InGaAsP/GaAs ДГС лазеры с раздельным ограничением, полученные методом жидкостной эпитаксии (${\lambda=0.78\div0.87}$ мкм, ${I_{\text{пор}}=460\,\text{А/см}^{2}}$, ${T=300}$ K)

    Fizika i Tekhnika Poluprovodnikov, 18:9 (1984),  1655–1659
  40. Low-Threshold Visible GalnAsP/GaAsP DH Lasers (${T=300}$ K, ${\lambda=0.70{-}0.66}\,\mu m,$ ${I_{\text{thresh}}\simeq1.5{-}3.2\,\text{кА}/\text{cm}^{2}}$)

    Fizika i Tekhnika Poluprovodnikov, 18:4 (1984),  757–758
  41. Visible Low-Threshold Pulsed and Continuous InGaAsP/InGaP/GaAs DH Lasers in the $0.73{-}0.79 \mu m$ Region (${T=300}$ K, ${I_{n}=3.5{-}1.3\,\text{mA}/\text{cm}^{2}}$)

    Fizika i Tekhnika Poluprovodnikov, 18:1 (1984),  162–165
  42. Температурная зависимость порога генерации в ДГ-InGaAsP/GaAs-структурах (${\lambda_{\text{ген}}=729}$ нм, ${T\geqslant300}$ K, ${J_{\text{пор}}\geqslant5\cdot10^{3}\,\text{А/см}^{2}}$)

    Fizika i Tekhnika Poluprovodnikov, 17:5 (1983),  843–846
  43. Фотолюминесцентные исследования перераспределения неравновесных носителей заряда в InGaAsP/InP с двумя активными областями

    Fizika i Tekhnika Poluprovodnikov, 17:4 (1983),  714–717
  44. Фотолюминесценция двойной гетероструктуры при возбуждении широкозонного эмиттера

    Fizika i Tekhnika Poluprovodnikov, 17:2 (1983),  242–246


© Steklov Math. Inst. of RAS, 2024