RUS  ENG
Full version
PEOPLE

Ryabov Vladimir Gennadievich

Publications in Math-Net.Ru

  1. Nonlinearity of vectorial functions over finite fields

    Diskr. Mat., 36:2 (2024),  50–70
  2. Distance between vectorial Boolean functions and affine analogues (following the Eighth International Olympiad in Cryptography)

    Mat. Vopr. Kriptogr., 15:1 (2024),  127–142
  3. New bounds on the nonlinearity of PN and APN functions over finite fields

    Diskr. Mat., 35:3 (2023),  45–59
  4. Characteristics of nonlinearity of vectorial functions over finite fields

    Mat. Vopr. Kriptogr., 14:2 (2023),  123–136
  5. Nonlinearity of APN functions: comparative analysis and estimates

    Prikl. Diskr. Mat., 2023, no. 61,  15–27
  6. Approximation of vectorial functions over finite fields and their restrictions to linear manifolds by affine analogues

    Diskr. Mat., 34:2 (2022),  83–105
  7. On the question on the approximation of vectorial functions over finite fields by affine analogues

    Mat. Vopr. Kriptogr., 13:4 (2022),  125–146
  8. Nonlinearity of functions over finite fields

    Diskr. Mat., 33:4 (2021),  110–131
  9. Criteria for maximal nonlinearity of a function over a finite field

    Diskr. Mat., 33:3 (2021),  79–91
  10. Maximally nonlinear functions over finite fields

    Diskr. Mat., 33:1 (2021),  47–63
  11. Nonlinearity of bent functions over finite fields

    Mat. Vopr. Kriptogr., 12:4 (2021),  87–98
  12. Approximation of restrictions of $q$-valued logic functions to linear manifolds by affine analogues

    Diskr. Mat., 32:4 (2020),  89–102
  13. On the degree of restrictions of $q$-valued logic vector functions to linear manifolds

    Diskr. Mat., 32:2 (2020),  61–70
  14. On the degree of restrictions of $q$-valued logic functions to linear manifolds

    Prikl. Diskr. Mat., 2019, no. 45,  13–25


© Steklov Math. Inst. of RAS, 2024