|   |  | 
	
	
	
 
	
  
	
	
        
	  
			Publications in Math-Net.Ru
			
				- 
				Nonlinearity of vectorial functions over finite fields
 
 Diskr. Mat., 36:2 (2024),  50–70
- 
				Distance between vectorial Boolean functions and affine analogues (following the Eighth International Olympiad in Cryptography)
 
 Mat. Vopr. Kriptogr., 15:1 (2024),  127–142
- 
				New bounds for the nonlinearity of PN functions and APN functions over finite fields
 
 Diskr. Mat., 35:3 (2023),  45–59
- 
				Characteristics of nonlinearity of vectorial functions over finite fields
 
 Mat. Vopr. Kriptogr., 14:2 (2023),  123–136
- 
				Nonlinearity of APN functions: comparative analysis and estimates
 
 Prikl. Diskr. Mat., 2023, no. 61,  15–27
- 
				Approximation of vectorial functions over finite fields and their restrictions to linear manifolds by affine analogues
 
 Diskr. Mat., 34:2 (2022),  83–105
- 
				On the question on the approximation of vectorial functions over finite fields by affine analogues
 
 Mat. Vopr. Kriptogr., 13:4 (2022),  125–146
- 
				Nonlinearity of functions over finite fields
 
 Diskr. Mat., 33:4 (2021),  110–131
- 
				Criteria for maximal nonlinearity of a function over a finite field
 
 Diskr. Mat., 33:3 (2021),  79–91
- 
				Maximally nonlinear functions over finite fields
 
 Diskr. Mat., 33:1 (2021),  47–63
- 
				Nonlinearity of bent functions over finite fields
 
 Mat. Vopr. Kriptogr., 12:4 (2021),  87–98
- 
				Approximation of restrictions of $q$-valued logic functions to linear manifolds by affine analogues
 
 Diskr. Mat., 32:4 (2020),  89–102
- 
				On the degree of restrictions of $q$-valued logic vector functions to linear manifolds
 
 Diskr. Mat., 32:2 (2020),  61–70
- 
				On the degree of restrictions of $q$-valued logic functions to linear manifolds
 
 Prikl. Diskr. Mat., 2019, no. 45,  13–25
 
				
	
	
	
	© , 2025