|
|
Publications in Math-Net.Ru
-
Nonlinearity of vectorial functions over finite fields
Diskr. Mat., 36:2 (2024), 50–70
-
Distance between vectorial Boolean functions and affine analogues (following the Eighth International Olympiad in Cryptography)
Mat. Vopr. Kriptogr., 15:1 (2024), 127–142
-
New bounds on the nonlinearity of PN and APN functions over finite fields
Diskr. Mat., 35:3 (2023), 45–59
-
Characteristics of nonlinearity of vectorial functions over finite fields
Mat. Vopr. Kriptogr., 14:2 (2023), 123–136
-
Nonlinearity of APN functions: comparative analysis and estimates
Prikl. Diskr. Mat., 2023, no. 61, 15–27
-
Approximation of vectorial functions over finite fields and their restrictions to linear manifolds by affine analogues
Diskr. Mat., 34:2 (2022), 83–105
-
On the question on the approximation of vectorial functions over finite fields by affine analogues
Mat. Vopr. Kriptogr., 13:4 (2022), 125–146
-
Nonlinearity of functions over finite fields
Diskr. Mat., 33:4 (2021), 110–131
-
Criteria for maximal nonlinearity of a function over a finite field
Diskr. Mat., 33:3 (2021), 79–91
-
Maximally nonlinear functions over finite fields
Diskr. Mat., 33:1 (2021), 47–63
-
Nonlinearity of bent functions over finite fields
Mat. Vopr. Kriptogr., 12:4 (2021), 87–98
-
Approximation of restrictions of $q$-valued logic functions to linear manifolds by affine analogues
Diskr. Mat., 32:4 (2020), 89–102
-
On the degree of restrictions of $q$-valued logic vector functions to linear manifolds
Diskr. Mat., 32:2 (2020), 61–70
-
On the degree of restrictions of $q$-valued logic functions to linear manifolds
Prikl. Diskr. Mat., 2019, no. 45, 13–25
© , 2024