|
|
Publications in Math-Net.Ru
-
On real roots of systems of trancendental equations with real coefficients
Bulletin of Irkutsk State University. Series Mathematics, 49 (2024), 90–104
-
On the real roots of systems of transcendental equations
J. Sib. Fed. Univ. Math. Phys., 17:3 (2024), 326–333
-
On the roots of systems of transcendental equations
Probl. Anal. Issues Anal., 13(31):1 (2024), 37–49
-
On one integral representation of Binet type
Sib. Èlektron. Mat. Izv., 21:2 (2024), 741–754
-
On multiple zeros of entire functions of finite order of growth
J. Sib. Fed. Univ. Math. Phys., 16:2 (2023), 239–244
-
On some sets sufficient for holomorphic continuation of functions with generalized boundary Morera property
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:3 (2023), 483–496
-
Some systems of transcendental equations
J. Sib. Fed. Univ. Math. Phys., 15:2 (2022), 137–149
-
On the zeta-function of zeros of an entire function
J. Sib. Fed. Univ. Math. Phys., 14:5 (2021), 599–603
-
On transcendental systems of equations
J. Sib. Fed. Univ. Math. Phys., 14:3 (2021), 326–343
-
Estimates for the volume of the zeros of a holomorphic function depending on a complex parameter
Mat. Sb., 212:11 (2021), 109–115
-
On functions with the boundary Morera property in domains with piecewise-smooth boundary
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:1 (2021), 50–58
-
On some examples of systems of transcendent equations
J. Sib. Fed. Univ. Math. Phys., 13:3 (2020), 285–296
-
On the application of the Plan formula to the study of the zeta-function of zeros of entire function
J. Sib. Fed. Univ. Math. Phys., 13:2 (2020), 135–140
-
On finding the resultant of two entire functions
Probl. Anal. Issues Anal., 9(27):3 (2020), 119–130
-
On an analog of the Binet integral representation
Sib. Èlektron. Mat. Izv., 17 (2020), 840–852
-
On family of complex straight lines sufficient for existence of holomorphic continuation of continuous functions on boundary of domain
Ufimsk. Mat. Zh., 12:3 (2020), 45–50
-
Residue integrals and Waring formulas for algebraical and transcendental systems of equations
Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 5, 40–55
-
On some approach for finding the resultant of two entire functions
J. Sib. Fed. Univ. Math. Phys., 12:4 (2019), 434–438
-
An approach to the determination of the resultant of two entire functions
Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 4, 49–59
-
Multidimensional boundary analog of the Hartogs theorem in circular domains
J. Sib. Fed. Univ. Math. Phys., 11:1 (2018), 79–90
-
Holomorphic extension of functions along finite families of complex straight lines in an $n$-circular domain
Sibirsk. Mat. Zh., 57:4 (2016), 792–808
-
Holomorphic extension of continuous functions along finite families of complex lines in a ball
J. Sib. Fed. Univ. Math. Phys., 8:3 (2015), 291–302
-
On calculation of power sums of roots for one class of systems of non-algebraic equations
Sib. Èlektron. Mat. Izv., 12 (2015), 190–209
-
On the Power Sums of Roots for Systems of the Entire Functions of Finite Order of Growth
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 14:3 (2014), 62–82
-
Evaluation of power sums of roots for systems of non-algebraic equations in $\mathbb C^n$
Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 12, 36–50
-
On convergence of series of homogeneous harmonic polynomials in $\mathbb R^n$
Sib. Èlektron. Mat. Izv., 10 (2013), 649–655
-
On a boundary analog of the Forelli theorem
Sibirsk. Mat. Zh., 54:5 (2013), 1051–1068
-
A rearrangement formula for a singular Cauchy–Szegö integral in a ball from $\mathbb C^n$
Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 4, 24–32
-
Holomorphic continuation of functions along finite families of complex lines in the ball
J. Sib. Fed. Univ. Math. Phys., 5:4 (2012), 547–557
-
On the families of complex lines which are sufficient for holomorphic continuation of functions given on the boundary of the domain
J. Sib. Fed. Univ. Math. Phys., 5:2 (2012), 213–222
-
Reflection principle for solutions of the Helmholtz equation in a half-space
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:1 (2012), 102–113
-
Some families of complex lines sufficient for holomorphic continuation of functions
Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 4, 72–80
-
Some application of the Bochner–Martinelli integral
J. Sib. Fed. Univ. Math. Phys., 4:1 (2011), 32–42
-
Minimal dimension families of complex lines sufficient for holomorphic extension of functions
Sibirsk. Mat. Zh., 52:2 (2011), 326–339
-
Iterates of the Bochner–Martinelli Integral Operator in a Ball
J. Sib. Fed. Univ. Math. Phys., 2:2 (2009), 137–145
-
Conditions for the $\overline\partial$-closedness of differential forms
Sibirsk. Mat. Zh., 50:6 (2009), 1333–1347
-
On Asymptotic Expansion of the Conormal Symbol of the Singular Bochner-Martinelli Operator on the Surfaces with Singular Points
J. Sib. Fed. Univ. Math. Phys., 1:1 (2008), 3–12
-
On Families of Complex Lines Sufficient for Holomorphic Extension
Mat. Zametki, 83:4 (2008), 545–551
-
On the zeta-function of systems of nonlinear equations
Sibirsk. Mat. Zh., 48:5 (2007), 1073–1082
-
Bochner–Martinelli singular integral operator on the hypersurfaces with singular points
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 7:2 (2007), 3–18
-
Higher-dimensional boundary analogs of the Morera theorem in problems of analytic continuation of functions
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 108 (2006), 67–105
-
Formulas for determining power sums of roots of systems of meromorphic functions
Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 8, 39–48
-
On the Cauchy principal value of the Khenkin–Ramirez singular integral in strictly pseudoconvex domains of`$\mathbb C^n$
Sibirsk. Mat. Zh., 46:3 (2005), 625–633
-
On a holomorphic Lefschetz formula in strictly pseudoconvex subdomains of complex manifolds
Mat. Sb., 195:12 (2004), 57–80
-
On construction of exact complexes connected with the Dolbeault complex
Sibirsk. Mat. Zh., 44:4 (2003), 779–799
-
On $CR$-distributions defined on hypersurfaces
Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 10, 47–52
-
On the removability of singularities of $CR$-functions
Fundam. Prikl. Mat., 6:2 (2000), 441–454
-
On conditions for the holomorphic continuation of smooth CR-functions into a fixed domain
Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 6, 37–40
-
On a boundary Morera theorem for classical domains
Sibirsk. Mat. Zh., 40:3 (1999), 595–604
-
On the holomorphic continuation of $CR$-hyperfunctions into a fixed domain
Sibirsk. Mat. Zh., 38:6 (1997), 1319–1334
-
On the holomorphicity of functions representable by the logarithmic residue formula
Sibirsk. Mat. Zh., 38:2 (1997), 351–361
-
Computer algebra of polynomials. A modified method of elimination
of unknowns
Dokl. Akad. Nauk, 350:4 (1996), 443–445
-
Removal of singularities of integrable $CR$-functions lying on Hölder peak sets
Dokl. Akad. Nauk, 341:1 (1995), 22–23
-
On a certain boundary analog of Morera's theorem
Sibirsk. Mat. Zh., 36:6 (1995), 1350–1353
-
On a 0Phicriterion for the existence of a Phiholomorphic continuation of functions into $C^2$
Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 8, 39–45
-
On the possibility of holomorphic extension, into a domain, of functions defined on a connected piece of its boundary. II
Mat. Sb., 184:1 (1993), 3–14
-
On holomorphic extension of hyperfunctions
Sibirsk. Mat. Zh., 34:6 (1993), 113–122
-
Removable singularities of $\mathrm{CR}$-functions given on generic manifolds
Dokl. Akad. Nauk, 326:3 (1992), 414–416
-
Holomorphic extension of $CR$-functions with singularities on a generic manifold
Izv. RAN. Ser. Mat., 56:3 (1992), 673–686
-
The Poincaré–Bertrand formula for the Martinelli–Bochner integral
Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 11, 29–34
-
Holomorphic continuation of functions from a part of the domain
boundary
Dokl. Akad. Nauk SSSR, 321:6 (1991), 1129–1132
-
On the number of real roots of systems of equations
Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 6, 20–23
-
On the possibility of holomorphic extension into a domain of function defined on a connected piece of its boundary
Mat. Sb., 182:4 (1991), 490–507
-
Holomorphic extension of CR-functions with singularities on a hypersurface
Izv. Akad. Nauk SSSR Ser. Mat., 54:6 (1990), 1320–1330
-
Multidimensional Carleman formulas in Siegel domain
Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 3, 44–49
-
Holomorphic extension of integrable $CR$-functions from part of the boundary of the domain
Mat. Zametki, 48:2 (1990), 64–71
-
The $\bar\partial$ Neumann problem for smooth functions and distributions
Mat. Sb., 181:5 (1990), 656–668
-
Logarithmic derivative of the resultant of a system of algebraic equations
Sibirsk. Mat. Zh., 31:6 (1990), 96–103
-
A generalized Fourier transform of tempered distributions
Sibirsk. Mat. Zh., 31:2 (1990), 94–103
-
Analogs of Carleman's formula for classical domains
Mat. Zametki, 45:3 (1989), 87–93
-
Boundary sets of uniqueness for pluriharmonic functions
Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 1, 25–28
-
On the removal singularities of integrable CR functions
Mat. Sb. (N.S.), 136(178):2(6) (1988), 178–186
-
A formula for the transformation of the Grothendieck residue and some of its applications
Sibirsk. Mat. Zh., 29:3 (1988), 198–202
-
The removal of singularities of CR-functions
Uspekhi Mat. Nauk, 42:6(258) (1987), 197–198
-
Application of a multidimensional logarithmic residue for obtaining analogues of the Voronoǐ–Hardy identity
Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 5, 11–16
-
Generalizations of the Schwarz and Riesz–Herglotz formulas in Reinhardt domains
Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 10, 60–64
-
Example of a nonpolynomially convex compactum consisting of three nonintersecting ellipsoids
Sibirsk. Mat. Zh., 25:5 (1984), 196–198
-
Determining all the steady solutions of the chemical-kinetics equations using the modified exclusion method
Fizika Goreniya i Vzryva, 19:1 (1983), 66–73
-
Determining all the steady solutions of the chemical-kinetics equations using the modified exclusion method. I. Algorithm
Fizika Goreniya i Vzryva, 19:1 (1983), 60–66
-
Calculation of an integral of Martinelli–Bochner type in a ball and some of its applications
Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 3, 59–66
-
Uniqueness of the reconstruction of a system of nonlinear algebraic equations from simple roots
Sibirsk. Mat. Zh., 24:6 (1983), 204–206
-
On the exact calculation of an integral of Martinelli–Bochner type in the ball in $\mathbb C^n$
Uspekhi Mat. Nauk, 36:3(219) (1981), 217–218
-
Multidimensional analogues of Newton's formulas for systems of nonlinear algebraic equations and some of their applications
Sibirsk. Mat. Zh., 22:2 (1981), 19–30
-
A class of multidimensional distributions
Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 10, 23–28
-
The representation and product of distributions of several variables by means of harmonic functions
Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 1, 36–42
-
An integral characteristic property $\bar\partial$-closed complex differential forms
Sibirsk. Mat. Zh., 19:4 (1978), 788–792
-
On a problem about the density of the polynomials of a definite form in the space of continuous functions on the boundary of the domain in $C^n$
Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 7, 50–51
-
A certain characteristic property of $\overline\partial$-closed exterior differential forms
Uspekhi Mat. Nauk, 31:2(188) (1976), 217–218
-
Holomorphicity of functions representable by a Martinelli–Bochner integral
Funktsional. Anal. i Prilozhen., 9:3 (1975), 83–84
© , 2025