RUS  ENG
Full version
PEOPLE

Kytmanov Aleksandr Mechislavovich

Publications in Math-Net.Ru

  1. On real roots of systems of trancendental equations with real coefficients

    Bulletin of Irkutsk State University. Series Mathematics, 49 (2024),  90–104
  2. On the real roots of systems of transcendental equations

    J. Sib. Fed. Univ. Math. Phys., 17:3 (2024),  326–333
  3. On the roots of systems of transcendental equations

    Probl. Anal. Issues Anal., 13(31):1 (2024),  37–49
  4. On one integral representation of Binet type

    Sib. Èlektron. Mat. Izv., 21:2 (2024),  741–754
  5. On multiple zeros of entire functions of finite order of growth

    J. Sib. Fed. Univ. Math. Phys., 16:2 (2023),  239–244
  6. On some sets sufficient for holomorphic continuation of functions with generalized boundary Morera property

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:3 (2023),  483–496
  7. Some systems of transcendental equations

    J. Sib. Fed. Univ. Math. Phys., 15:2 (2022),  137–149
  8. On the zeta-function of zeros of an entire function

    J. Sib. Fed. Univ. Math. Phys., 14:5 (2021),  599–603
  9. On transcendental systems of equations

    J. Sib. Fed. Univ. Math. Phys., 14:3 (2021),  326–343
  10. Estimates for the volume of the zeros of a holomorphic function depending on a complex parameter

    Mat. Sb., 212:11 (2021),  109–115
  11. On functions with the boundary Morera property in domains with piecewise-smooth boundary

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:1 (2021),  50–58
  12. On some examples of systems of transcendent equations

    J. Sib. Fed. Univ. Math. Phys., 13:3 (2020),  285–296
  13. On the application of the Plan formula to the study of the zeta-function of zeros of entire function

    J. Sib. Fed. Univ. Math. Phys., 13:2 (2020),  135–140
  14. On finding the resultant of two entire functions

    Probl. Anal. Issues Anal., 9(27):3 (2020),  119–130
  15. On an analog of the Binet integral representation

    Sib. Èlektron. Mat. Izv., 17 (2020),  840–852
  16. On family of complex straight lines sufficient for existence of holomorphic continuation of continuous functions on boundary of domain

    Ufimsk. Mat. Zh., 12:3 (2020),  45–50
  17. Residue integrals and Waring formulas for algebraical and transcendental systems of equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 5,  40–55
  18. On some approach for finding the resultant of two entire functions

    J. Sib. Fed. Univ. Math. Phys., 12:4 (2019),  434–438
  19. An approach to the determination of the resultant of two entire functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 4,  49–59
  20. Multidimensional boundary analog of the Hartogs theorem in circular domains

    J. Sib. Fed. Univ. Math. Phys., 11:1 (2018),  79–90
  21. Holomorphic extension of functions along finite families of complex straight lines in an $n$-circular domain

    Sibirsk. Mat. Zh., 57:4 (2016),  792–808
  22. Holomorphic extension of continuous functions along finite families of complex lines in a ball

    J. Sib. Fed. Univ. Math. Phys., 8:3 (2015),  291–302
  23. On calculation of power sums of roots for one class of systems of non-algebraic equations

    Sib. Èlektron. Mat. Izv., 12 (2015),  190–209
  24. On the Power Sums of Roots for Systems of the Entire Functions of Finite Order of Growth

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 14:3 (2014),  62–82
  25. Evaluation of power sums of roots for systems of non-algebraic equations in $\mathbb C^n$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 12,  36–50
  26. On convergence of series of homogeneous harmonic polynomials in $\mathbb R^n$

    Sib. Èlektron. Mat. Izv., 10 (2013),  649–655
  27. On a boundary analog of the Forelli theorem

    Sibirsk. Mat. Zh., 54:5 (2013),  1051–1068
  28. A rearrangement formula for a singular Cauchy–Szegö integral in a ball from $\mathbb C^n$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 4,  24–32
  29. Holomorphic continuation of functions along finite families of complex lines in the ball

    J. Sib. Fed. Univ. Math. Phys., 5:4 (2012),  547–557
  30. On the families of complex lines which are sufficient for holomorphic continuation of functions given on the boundary of the domain

    J. Sib. Fed. Univ. Math. Phys., 5:2 (2012),  213–222
  31. Reflection principle for solutions of the Helmholtz equation in a half-space

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:1 (2012),  102–113
  32. Some families of complex lines sufficient for holomorphic continuation of functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 4,  72–80
  33. Some application of the Bochner–Martinelli integral

    J. Sib. Fed. Univ. Math. Phys., 4:1 (2011),  32–42
  34. Minimal dimension families of complex lines sufficient for holomorphic extension of functions

    Sibirsk. Mat. Zh., 52:2 (2011),  326–339
  35. Iterates of the Bochner–Martinelli Integral Operator in a Ball

    J. Sib. Fed. Univ. Math. Phys., 2:2 (2009),  137–145
  36. Conditions for the $\overline\partial$-closedness of differential forms

    Sibirsk. Mat. Zh., 50:6 (2009),  1333–1347
  37. On Asymptotic Expansion of the Conormal Symbol of the Singular Bochner-Martinelli Operator on the Surfaces with Singular Points

    J. Sib. Fed. Univ. Math. Phys., 1:1 (2008),  3–12
  38. On Families of Complex Lines Sufficient for Holomorphic Extension

    Mat. Zametki, 83:4 (2008),  545–551
  39. On the zeta-function of systems of nonlinear equations

    Sibirsk. Mat. Zh., 48:5 (2007),  1073–1082
  40. Bochner–Martinelli singular integral operator on the hypersurfaces with singular points

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 7:2 (2007),  3–18
  41. Higher-dimensional boundary analogs of the Morera theorem in problems of analytic continuation of functions

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 108 (2006),  67–105
  42. Formulas for determining power sums of roots of systems of meromorphic functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 8,  39–48
  43. On the Cauchy principal value of the Khenkin–Ramirez singular integral in strictly pseudoconvex domains of`$\mathbb C^n$

    Sibirsk. Mat. Zh., 46:3 (2005),  625–633
  44. On a holomorphic Lefschetz formula in strictly pseudoconvex subdomains of complex manifolds

    Mat. Sb., 195:12 (2004),  57–80
  45. On construction of exact complexes connected with the Dolbeault complex

    Sibirsk. Mat. Zh., 44:4 (2003),  779–799
  46. On $CR$-distributions defined on hypersurfaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 10,  47–52
  47. On the removability of singularities of $CR$-functions

    Fundam. Prikl. Mat., 6:2 (2000),  441–454
  48. On conditions for the holomorphic continuation of smooth CR-functions into a fixed domain

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 6,  37–40
  49. On a boundary Morera theorem for classical domains

    Sibirsk. Mat. Zh., 40:3 (1999),  595–604
  50. On the holomorphic continuation of $CR$-hyperfunctions into a fixed domain

    Sibirsk. Mat. Zh., 38:6 (1997),  1319–1334
  51. On the holomorphicity of functions representable by the logarithmic residue formula

    Sibirsk. Mat. Zh., 38:2 (1997),  351–361
  52. Computer algebra of polynomials. A modified method of elimination of unknowns

    Dokl. Akad. Nauk, 350:4 (1996),  443–445
  53. Removal of singularities of integrable $CR$-functions lying on Hölder peak sets

    Dokl. Akad. Nauk, 341:1 (1995),  22–23
  54. On a certain boundary analog of Morera's theorem

    Sibirsk. Mat. Zh., 36:6 (1995),  1350–1353
  55. On a 0Phicriterion for the existence of a Phiholomorphic continuation of functions into $C^2$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 8,  39–45
  56. On the possibility of holomorphic extension, into a domain, of functions defined on a connected piece of its boundary. II

    Mat. Sb., 184:1 (1993),  3–14
  57. On holomorphic extension of hyperfunctions

    Sibirsk. Mat. Zh., 34:6 (1993),  113–122
  58. Removable singularities of $\mathrm{CR}$-functions given on generic manifolds

    Dokl. Akad. Nauk, 326:3 (1992),  414–416
  59. Holomorphic extension of $CR$-functions with singularities on a generic manifold

    Izv. RAN. Ser. Mat., 56:3 (1992),  673–686
  60. The Poincaré–Bertrand formula for the Martinelli–Bochner integral

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 11,  29–34
  61. Holomorphic continuation of functions from a part of the domain boundary

    Dokl. Akad. Nauk SSSR, 321:6 (1991),  1129–1132
  62. On the number of real roots of systems of equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 6,  20–23
  63. On the possibility of holomorphic extension into a domain of function defined on a connected piece of its boundary

    Mat. Sb., 182:4 (1991),  490–507
  64. Holomorphic extension of CR-functions with singularities on a hypersurface

    Izv. Akad. Nauk SSSR Ser. Mat., 54:6 (1990),  1320–1330
  65. Multidimensional Carleman formulas in Siegel domain

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 3,  44–49
  66. Holomorphic extension of integrable $CR$-functions from part of the boundary of the domain

    Mat. Zametki, 48:2 (1990),  64–71
  67. The $\bar\partial$ Neumann problem for smooth functions and distributions

    Mat. Sb., 181:5 (1990),  656–668
  68. Logarithmic derivative of the resultant of a system of algebraic equations

    Sibirsk. Mat. Zh., 31:6 (1990),  96–103
  69. A generalized Fourier transform of tempered distributions

    Sibirsk. Mat. Zh., 31:2 (1990),  94–103
  70. Analogs of Carleman's formula for classical domains

    Mat. Zametki, 45:3 (1989),  87–93
  71. Boundary sets of uniqueness for pluriharmonic functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 1,  25–28
  72. On the removal singularities of integrable CR functions

    Mat. Sb. (N.S.), 136(178):2(6) (1988),  178–186
  73. A formula for the transformation of the Grothendieck residue and some of its applications

    Sibirsk. Mat. Zh., 29:3 (1988),  198–202
  74. The removal of singularities of CR-functions

    Uspekhi Mat. Nauk, 42:6(258) (1987),  197–198
  75. Application of a multidimensional logarithmic residue for obtaining analogues of the Voronoǐ–Hardy identity

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 5,  11–16
  76. Generalizations of the Schwarz and Riesz–Herglotz formulas in Reinhardt domains

    Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 10,  60–64
  77. Example of a nonpolynomially convex compactum consisting of three nonintersecting ellipsoids

    Sibirsk. Mat. Zh., 25:5 (1984),  196–198
  78. Determining all the steady solutions of the chemical-kinetics equations using the modified exclusion method

    Fizika Goreniya i Vzryva, 19:1 (1983),  66–73
  79. Determining all the steady solutions of the chemical-kinetics equations using the modified exclusion method. I. Algorithm

    Fizika Goreniya i Vzryva, 19:1 (1983),  60–66
  80. Calculation of an integral of Martinelli–Bochner type in a ball and some of its applications

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 3,  59–66
  81. Uniqueness of the reconstruction of a system of nonlinear algebraic equations from simple roots

    Sibirsk. Mat. Zh., 24:6 (1983),  204–206
  82. On the exact calculation of an integral of Martinelli–Bochner type in the ball in $\mathbb C^n$

    Uspekhi Mat. Nauk, 36:3(219) (1981),  217–218
  83. Multidimensional analogues of Newton's formulas for systems of nonlinear algebraic equations and some of their applications

    Sibirsk. Mat. Zh., 22:2 (1981),  19–30
  84. A class of multidimensional distributions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 10,  23–28
  85. The representation and product of distributions of several variables by means of harmonic functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 1,  36–42
  86. An integral characteristic property $\bar\partial$-closed complex differential forms

    Sibirsk. Mat. Zh., 19:4 (1978),  788–792
  87. On a problem about the density of the polynomials of a definite form in the space of continuous functions on the boundary of the domain in $C^n$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 7,  50–51
  88. A certain characteristic property of $\overline\partial$-closed exterior differential forms

    Uspekhi Mat. Nauk, 31:2(188) (1976),  217–218
  89. Holomorphicity of functions representable by a Martinelli–Bochner integral

    Funktsional. Anal. i Prilozhen., 9:3 (1975),  83–84


© Steklov Math. Inst. of RAS, 2025