|
|
Publications in Math-Net.Ru
-
Inverse image of precompact sets and regular solutions to the Navier-Stokes equations
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:2 (2022), 278–297
-
An open mapping theorem for the Navier-Stokes type equations associated with the de Rham complex over ${\mathbb R}^n$
Sib. Èlektron. Mat. Izv., 18:2 (2021), 1433–1466
-
A perturbation of the de Rham complex
J. Sib. Fed. Univ. Math. Phys., 13:5 (2020), 519–532
-
A degree theory for Lagrangian boundary value problems
J. Sib. Fed. Univ. Math. Phys., 13:1 (2020), 5–25
-
Asymptotic Expansions at Nonsymmetric Cuspidal Points
Mat. Zametki, 108:2 (2020), 219–228
-
A remark on the laplace transform
Sibirsk. Mat. Zh., 61:4 (2020), 946–955
-
The de Rham cohomology through Hilbert space methods
J. Sib. Fed. Univ. Math. Phys., 12:4 (2019), 455–465
-
Navier–Stokes equations for elliptic complexes
J. Sib. Fed. Univ. Math. Phys., 12:1 (2019), 3–27
-
Successive approximation for the inhomogeneous Burgers equation
J. Sib. Fed. Univ. Math. Phys., 11:4 (2018), 519–531
-
A Riemann-Hilbert problem for the Moisil–Teodorescu system
Mat. Tr., 21:1 (2018), 155–192
-
The Neumann problem after Spencer
J. Sib. Fed. Univ. Math. Phys., 10:4 (2017), 474–493
-
Construction of series of perfect lattices by layer superposition
J. Sib. Fed. Univ. Math. Phys., 10:3 (2017), 353–361
-
A Nonstandard Cauchy Problem for the Heat Equation
Mat. Zametki, 102:2 (2017), 270–283
-
On the convergence rate of continuous Newton method
CMFD, 62 (2016), 152–165
-
An integral formula for the number of lattice points in a domain
J. Sib. Fed. Univ. Math. Phys., 8:2 (2015), 134–139
-
Sturm–Liouville problems in weighted spaces in domains with nonsmooth edges. II
Mat. Tr., 18:2 (2015), 133–204
-
Sturm–Liouville problems in weighted spaces in domains with nonsmooth edges. I
Mat. Tr., 18:1 (2015), 118–189
-
An extremal problem related to analytic continuation
J. Sib. Fed. Univ. Math. Phys., 7:1 (2014), 79–90
-
Degeneration of Boundary Layer at Singular Points
J. Sib. Fed. Univ. Math. Phys., 6:3 (2013), 283–297
-
On spectral projection for the complex Neumann problem
J. Sib. Fed. Univ. Math. Phys., 5:4 (2012), 439–450
-
An analogue of the Paley–Wiener theorem and its applications to optimal recovery of entire functions
Ufimsk. Mat. Zh., 3:1 (2011), 16–30
-
An explicit Carleman formula for the Dolbeault cohomology
J. Sib. Fed. Univ. Math. Phys., 3:4 (2010), 450–460
-
Hyperbolic formulas in elliptic Ñauchy problems
J. Sib. Fed. Univ. Math. Phys., 3:4 (2010), 419–432
-
Local boundary value problems for Dirac type operators
Sibirsk. Mat. Zh., 51:5 (2010), 1061–1077
-
Algebraic Analysis of Differential Equations
J. Sib. Fed. Univ. Math. Phys., 1:4 (2008), 391–398
-
Boundary Value Problems with Non-Local Conditions
J. Sib. Fed. Univ. Math. Phys., 1:2 (2008), 158–187
-
Euler Characteristic of Fredholm Quasicomplexes
Funktsional. Anal. i Prilozhen., 41:4 (2007), 87–93
-
Green's formulas in complex analysis
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 108 (2006), 106–157
-
On a holomorphic Lefschetz formula in strictly pseudoconvex subdomains of complex manifolds
Mat. Sb., 195:12 (2004), 57–80
-
Approximation on compact sets by solutions of systems with surjective symbol
Uspekhi Mat. Nauk, 48:5(293) (1993), 107–146
-
The method of Fischer–Riesz equations in the ill-posed Cauchy problem for systems with an injective symbol
Dokl. Akad. Nauk, 326:5 (1992), 776–780
-
Bases with double orthogonality in the Cauchy problem for systems
with an injective symbol
Dokl. Akad. Nauk, 326:1 (1992), 45–49
-
The Poincaré–Bertrand formula for the Martinelli–Bochner integral
Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 11, 29–34
-
On the Cauchy problem for holomorphic functions of the Lebesgue class $L^2$ in a domain
Sibirsk. Mat. Zh., 33:5 (1992), 186–195
-
On the singular Martinelli–Bochner integral
Sibirsk. Mat. Zh., 33:2 (1992), 202–205
-
Approximation in Sobolev spaces by solutions of elliptic systems
Dokl. Akad. Nauk SSSR, 315:6 (1990), 1308–1313
-
Conditionally stable linear problems and the Carleman formula
Sibirsk. Mat. Zh., 31:6 (1990), 9–15
-
A criterion for the solvability of the ill-posed Cauchy problem
for elliptic systems
Dokl. Akad. Nauk SSSR, 308:3 (1989), 531–534
-
Removable singularities of Hölder solutions of elliptic systems
Differ. Uravn., 25:2 (1989), 341–342
-
The structure of solutions of elliptic systems with a compact set of singularities
Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 12, 47–56
-
A remark on the jump of the Martinelli–Bochner integral for domains with a piecewise smooth boundary
Sibirsk. Mat. Zh., 30:1 (1989), 199–201
-
Cohomology of differential complexes
Dokl. Akad. Nauk SSSR, 302:2 (1988), 267–270
-
An abstract Carleman formula
Dokl. Akad. Nauk SSSR, 298:6 (1988), 1292–1296
-
Family of capacities that characterize removable singularities
Mat. Zametki, 43:5 (1988), 651–656
-
Laurent expansions and uniform approximation by solutions of elliptic systems
Uspekhi Mat. Nauk, 43:3(261) (1988), 195–196
-
A Laurent expansion and local properties for solving elliptic systems
Sibirsk. Mat. Zh., 29:6 (1988), 123–134
-
Uniform approximation by solutions of elliptic systems
Mat. Sb. (N.S.), 133(175):3(7) (1987), 356–381
-
A remark on the Moisil–Teodorescu system
Sibirsk. Mat. Zh., 28:3 (1987), 208–213
-
Laurent series for elliptic complexes
Dokl. Akad. Nauk SSSR, 291:1 (1986), 40–44
-
On Alexander duality for elliptic complexes
Mat. Sb. (N.S.), 130(172):1(5) (1986), 62–85
-
The Carleman matrix for elliptic systems
Dokl. Akad. Nauk SSSR, 284:2 (1985), 294–297
-
Stability of the solutions of elliptic systems
Funktsional. Anal. i Prilozhen., 19:3 (1985), 92–93
-
The argument principle for elliptic complexes
Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 12, 74–75
-
Analog of the Painlevé theorem for elliptic systems
Mat. Zametki, 37:4 (1985), 554–560
-
Calculation of the Poincaré index
Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 9, 47–50
-
On a problem of Kohn and Nirenberg
Sibirsk. Mat. Zh., 25:5 (1984), 200–203
-
The kernel approach to the solution of the equation $Pu=f$ for an elliptic complex $P$
Sibirsk. Mat. Zh., 25:4 (1984), 179–191
-
Fundamental solutions of elliptic complexes and their applications
Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 6, 33–42
-
An analogue of the logarithmic residue formula for solutions of first-order elliptic systems and weighted estimates of solutions of the $d$-problem
Sibirsk. Mat. Zh., 23:3 (1982), 188–197
-
Formula and estimates for solutions of the equation $du=f$ in a domain and on the boundary of a domain
Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 5, 58–66
-
Boris Vasil'evich Fedosov (obituary)
Uspekhi Mat. Nauk, 67:1(403) (2012), 169–176
-
A referee report on the Dr. Sc. dissertation “Problems of calculus of differential forms on Riemannian manifolds” by I. A. Shvedov
Sib. Èlektron. Mat. Izv., 6 (2009), 11–17
© , 2024