| 
	
        
	
                        
	 | 
	
	
	
	
 
	
  
	
	
        
	  
			Publications in Math-Net.Ru
			
				- 
				Sets of uniqueness for subsystems of the trigonometric system
Mat. Zametki, 117:1 (2025),  79–90	 
					- 
				Subsystems of independent functions for the Walsh and Vilenkin–Chrestenson systems
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2025, no. 3,  76–80	 
					- 
				Reconstruction of functions in Sobolev- and Korobov-type $p$-ary classes with small smoothness parameters
Mat. Zametki, 116:5 (2024),  744–758	 
					- 
				Uniqueness sets of positive measure for the trigonometric system
Izv. RAN. Ser. Mat., 86:6 (2022),  161–186	 
					- 
				Recovery of Functions on $p$-Adic Groups
Mat. Zametki, 112:6 (2022),  867–878	 
					- 
				Recovery of integrable functions and trigonometric series
Mat. Sb., 212:6 (2021),  109–125	 
					- 
				$\lambda$-Convergence of Multiple Walsh–Paley Series and Sets of Uniqueness
Mat. Zametki, 102:2 (2017),  292–301	 
					- 
				Decomposition of dyadic measures and unions of closed $\mathscr{U}$-sets for series in a Haar system
Mat. Sb., 207:3 (2016),  137–152	 
					- 
				Martingales and Theorems of Cantor–Young–Bernstein and de la Vallée Poussin
Izv. Saratov Univ. Math. Mech. Inform., 14:4(2) (2014),  569–574	 
					- 
				Multiple Walsh Series and Zygmund Sets
Mat. Zametki, 95:5 (2014),  750–762	 
					- 
				Coefficients of convergent multiple Haar series
Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 1,  67–71	 
					- 
				Coefficients of convergent multiple Walsh-Paley series
Mat. Sb., 203:9 (2012),  67–82	 
					- 
				Quasi-measures, Hausdorff $p$-measures and Walsh and Haar series
Izv. RAN. Ser. Mat., 74:4 (2010),  157–188	 
					- 
				Quasi-measures on the group $G^m$, Dirichlet sets, and uniqueness problems for multiple Walsh series
Mat. Sb., 201:12 (2010),  131–156	 
					- 
				Generalized Riemann-Type Integrals on the Plane and an Example of Double Haar Series
Mat. Zametki, 86:4 (2009),  601–611	 
					- 
				On multiple Walsh series convergent over cubes
Izv. RAN. Ser. Mat., 71:1 (2007),  61–78	 
					- 
				On Uniqueness Sets for Multiple Walsh Series
Mat. Zametki, 81:2 (2007),  265–279	 
					- 
				Several properties of generalized multivariate integrals
and theorems of the du Bois-Reymond type for Haar series
Mat. Sb., 198:7 (2007),  63–90	 
					- 
				On the boundary of existence of uniqueness for two-dimensional Haar series
Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 7,  57–64	 
					- 
				On the reconstruction of the coefficients of two-dimensional Haar series
Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 2,  45–53	 
					- 
				Uniqueness for multiple Haar series
Mat. Sb., 196:2 (2005),  97–116	 
					- 
				Uniqueness Questions for Some Classes of Haar Series
Mat. Zametki, 75:3 (2004),  392–404	 
					- 
				A certain Perron type integral
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2004, no. 2,  12–15	 
					- 
				Violation of the uniqueness for two-dimensional Haar series
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2003, no. 4,  20–24	 
					- 
				On the uniqueness of everywhere converging multiple Haar series
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2001, no. 1,  23–28	 
					- 
				On the Mawhin integral and its application to Haar series
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 4,  63–66	 
					
						- 
				Valentin Anatol'evich Skvortsov (on his 80th birthday)
Uspekhi Mat. Nauk, 71:1(427) (2016),  184–186	 
					
			 
				
	
	
	
	© , 2025