RUS  ENG
Full version
PEOPLE

Ulyanov Vladimir Vasilievich

Publications in Math-Net.Ru

  1. Laplace expansion for Bartlett–Nanda–Pillai's test statistic and its error bound

    Teor. Veroyatnost. i Primenen., 68:4 (2023),  705–718
  2. The Chebyshev–Edgeworth correction in the central limit theorem for integer-valued independent summands

    Teor. Veroyatnost. i Primenen., 66:4 (2021),  676–692
  3. Non-asymptotic analysis of Lawley–Hotelling statistic for high dimensional data

    Zap. Nauchn. Sem. POMI, 486 (2019),  178–189
  4. On bounds for characteristic functions of the powers of asymptotically normal random variables

    Teor. Veroyatnost. i Primenen., 62:1 (2017),  122–144
  5. Second order Chebyshev–Edgeworth and Cornish–Fisher expansions for distributions of statistics constructed from samples with random sizes

    Zap. Nauchn. Sem. POMI, 466 (2017),  167–207
  6. Generalized Cornish–Fisher expansions for distributions of statistics based on samples of random size

    Inform. Primen., 10:2 (2016),  84–91
  7. On computable estimates for accuracy of approximation for the Bartlett–Nanda–Pillai statistic

    Mat. Tr., 19:2 (2016),  109–118
  8. On properties of polynomials in random elements

    Teor. Veroyatnost. i Primenen., 60:2 (2015),  391–402
  9. On accuracy of approximations for standardized chi-squared distributions by Edgeworth–Chebyshev expansions

    Inform. Primen., 5:1 (2011),  25–30
  10. On approximating some statistics of goodness-of-fit tests in the case of three-dimensional discrete data

    Sibirsk. Mat. Zh., 52:4 (2011),  728–744
  11. Asymptotic distributions of basic statistics in geometric representation for high-dimensional data and their error bounds

    Inform. Primen., 4:1 (2010),  12–17
  12. Асимптотические свойства почти квадратичных форм

    Teor. Veroyatnost. i Primenen., 55:3 (2010),  617–618
  13. On approximations of transformed chi-squared distributions in statistical applications

    Sibirsk. Mat. Zh., 47:6 (2006),  1401–1413
  14. On smooth behavior of probability distributions under polynomial mappings

    Teor. Veroyatnost. i Primenen., 42:1 (1997),  51–62
  15. Bounds for characteristic functions of polynomials in asymptotically normal random variables

    Uspekhi Mat. Nauk, 51:2(308) (1996),  3–26
  16. Asymptotic expansions of the probability that the sum of independent random variables hits a ball in a Hilbert space

    Uspekhi Mat. Nauk, 50:5(305) (1995),  203–222
  17. On distribution of quadratic forms in Gaussian random variables

    Teor. Veroyatnost. i Primenen., 40:2 (1995),  301–312
  18. A precise estimate of the rate of convergence in the Central Limit Theorem in Hilbert space

    Mat. Sb., 180:12 (1989),  1587–1613
  19. A Precise Estimate of the Accuracy of Normal Approximation in Hilbert Space

    Teor. Veroyatnost. i Primenen., 33:4 (1988),  753–754
  20. Normal Approximation in Hilbert Space. II

    Teor. Veroyatnost. i Primenen., 33:3 (1988),  508–521
  21. Normal Approximation in Hilbert Space. I

    Teor. Veroyatnost. i Primenen., 33:2 (1988),  225–245
  22. Periodic effective potentials for spin systems and new exact solutions of the one-dimensional Schrödinger equation for the energy bands

    TMF, 71:2 (1987),  260–271
  23. Estimates for the closeness of Gaussian measures

    Dokl. Akad. Nauk SSSR, 291:2 (1986),  273–277
  24. Asymptotic expansions for the distributions of sums of independent random variables in $H$

    Teor. Veroyatnost. i Primenen., 31:1 (1986),  31–46
  25. On the non-uniform estimate of the rate of convergence in the local limit theorem in the case of a stable limit distribution

    Teor. Veroyatnost. i Primenen., 27:3 (1982),  566–568
  26. An estimate for the rate of convergence in the central limit theorem in a real separable Hilbert space

    Mat. Zametki, 29:1 (1981),  145–153
  27. Some improvements of convergence rate estimates in the central limit theorem

    Teor. Veroyatnost. i Primenen., 23:3 (1978),  684–688
  28. A non-uniform estimate of the speed of convergence in the central limit theorem in $R$

    Teor. Veroyatnost. i Primenen., 21:2 (1976),  280–292

  29. Russian-Japan symposium on stochastic analysis of the advanced statistical models

    Teor. Veroyatnost. i Primenen., 55:3 (2010),  602
  30. Colloquium at the University of Bielefeld

    Teor. Veroyatnost. i Primenen., 45:1 (2000),  203
  31. Letter to the editor

    Teor. Veroyatnost. i Primenen., 35:1 (1990),  187
  32. Letter to the editors

    Teor. Veroyatnost. i Primenen., 24:1 (1979),  236


© Steklov Math. Inst. of RAS, 2025