RUS  ENG
Full version
PEOPLE

Illarionov Andrei Anatol'evich

Publications in Math-Net.Ru

  1. Probability estimates related to Korobov's number-theoretical quadrature formulas  

    Algebra i Analiz, 36:6 (2024),  47–81
  2. Calculation of hyperelliptic systems of sequences of rank 4

    Izv. RAN. Ser. Mat., 87:6 (2023),  76–102
  3. Refinement of Bakhvalov's Estimate for the Error of Korobov's Quadrature Formulas

    Mat. Zametki, 113:6 (2023),  935–939
  4. Existence of sequences satisfying bilinear type recurrence relations

    Probl. Peredachi Inf., 59:2 (2023),  102–119
  5. Distribution of Korobov-Hlawka sequences

    Mat. Sb., 213:9 (2022),  70–96
  6. A probability estimate for the discrepancy of Korobov lattice points

    Mat. Sb., 212:11 (2021),  73–88
  7. On a Multilinear Functional Equation

    Mat. Zametki, 107:1 (2020),  59–73
  8. The statistical properties of 3D Klein polyhedra

    Mat. Sb., 211:5 (2020),  78–97
  9. Solution of functional equations related to elliptic functions. III

    Dal'nevost. Mat. Zh., 19:2 (2019),  197–205
  10. Asymmetric cryptography and hyperelliptic sequences

    Dal'nevost. Mat. Zh., 19:2 (2019),  185–196
  11. Solution of functional equations related to elliptic functions. II

    Sib. Èlektron. Mat. Izv., 16 (2019),  481–492
  12. Hyperelliptic systems of sequences of rank 4

    Mat. Sb., 210:9 (2019),  59–88
  13. On Wiener's attack on RSA cryptosystem

    Dal'nevost. Mat. Zh., 18:2 (2018),  189–194
  14. On the Somos-4 sequence

    Dal'nevost. Mat. Zh., 18:2 (2018),  183–188
  15. The solvability of stationary boundary value problem for Euler equations

    Dal'nevost. Mat. Zh., 18:1 (2018),  48–55
  16. Hyperquasipolynomials for the Theta-Function

    Funktsional. Anal. i Prilozhen., 52:3 (2018),  84–87
  17. Distribution of facets of higher-dimensional Klein polyhedra

    Mat. Sb., 209:1 (2018),  58–73
  18. On products of Weierstrass sigma functions

    Zap. Nauchn. Sem. POMI, 467 (2018),  73–84
  19. On the connection between hyperelliptic systems of sequences and functions

    Dal'nevost. Mat. Zh., 17:2 (2017),  210–220
  20. Solution of functional equations related to elliptic functions

    Trudy Mat. Inst. Steklova, 299 (2017),  105–117
  21. Solutions of a functional equation concerning with trilinear differential operators

    Dal'nevost. Mat. Zh., 16:2 (2016),  169–180
  22. Functional Equations and Weierstrass Sigma-Functions

    Funktsional. Anal. i Prilozhen., 50:4 (2016),  43–54
  23. The distribution of integer lengths of Klein polyhedra edges

    Dal'nevost. Mat. Zh., 15:2 (2015),  214–221
  24. The stationary solutions to the two-dimensional Navier–Stokes equation for large fluxes

    Dal'nevost. Mat. Zh., 15:1 (2015),  61–69
  25. Some properties of three-dimensional Klein polyhedra

    Mat. Sb., 206:4 (2015),  35–66
  26. Analytic solutions of extremal problems for the Laplace's equation

    Dal'nevost. Mat. Zh., 14:2 (2014),  231–241
  27. On the average number of best approximations of linear forms

    Izv. RAN. Ser. Mat., 78:2 (2014),  61–86
  28. A multidimensional generalization of Heilbronn's theorem on the average length of a finite continued fraction

    Mat. Sb., 205:3 (2014),  119–132
  29. On the statistical properties of Klein polyhedra in three-dimensional lattices

    Mat. Sb., 204:6 (2013),  23–46
  30. On cylindrical minima of integer lattices

    Algebra i Analiz, 24:2 (2012),  154–170
  31. On Statistical Properties of Local Minima of Integer Lattices

    Dal'nevost. Mat. Zh., 12:2 (2012),  201–230
  32. The average number of relative minima of three-dimensional integer lattices of a given determinant

    Izv. RAN. Ser. Mat., 76:3 (2012),  111–138
  33. The average number of local minima of three-dimensional integer lattices

    Algebra i Analiz, 23:3 (2011),  189–215
  34. On the number of local minima of integer lattices

    Dal'nevost. Mat. Zh., 11:2 (2011),  149–154
  35. The average number of vertexes of Klein polyhedrons for integer lattices

    Dal'nevost. Mat. Zh., 11:1 (2011),  48–55
  36. On cylindrical minima of three-dimensional lattices

    Dal'nevost. Mat. Zh., 11:1 (2011),  37–47
  37. Estimates of the Number of Relative Minima of Lattices

    Mat. Zametki, 89:2 (2011),  249–259
  38. On a possibility of generalization of the Hopf lemma to the case of the Navier–Stokes system with nonzero flows

    Sibirsk. Mat. Zh., 50:4 (2009),  831–835
  39. The solvability of extremal problems for Poisson equation and Stokes system

    Dal'nevost. Mat. Zh., 8:2 (2008),  164–170
  40. Variational inequalities, boundary – value problems and optimal control for the Navier – Stokes equations

    Dal'nevost. Mat. Zh., 8:1 (2008),  121–140
  41. Nonlocal overdetermined boundary value problem for stationary Navier–Stokes equations

    Zh. Vychisl. Mat. Mat. Fiz., 48:6 (2008),  1056–1061
  42. A nonlocal boundary value problem with overdetermination for an elliptic equation

    Sib. Zh. Ind. Mat., 10:2 (2007),  64–69
  43. The solvability of stationary boundary problem for model of the granular medium

    Dal'nevost. Mat. Zh., 5:2 (2004),  178–183
  44. Solvability of a Mixed Boundary Value Problem for the Stationary Navier–Stokes Equations

    Differ. Uravn., 37:5 (2001),  689–695
  45. On the solvability of boundary problems for stationary Navier-Stokes equations

    Dal'nevost. Mat. Zh., 2:1 (2001),  16–36
  46. Optimal Boundary Control of Steady-State Flow of a Viscous Inhomogeneous Incompressible Fluid

    Mat. Zametki, 69:5 (2001),  666–678
  47. Asymptotics of solutions to the optimal control problem for time-indepentent Navier–Stokes equations

    Zh. Vychisl. Mat. Mat. Fiz., 41:7 (2001),  1045–1056
  48. Solvability of a stationary boundary value problem in a diffusion model of a nonhomogeneous fluid

    Sib. Zh. Ind. Mat., 3:1 (2000),  116–123
  49. Asymptotics of solutions to the optimal control problem for time-independent Navier–Stokes equations

    Zh. Vychisl. Mat. Mat. Fiz., 40:7 (2000),  1061–1070


© Steklov Math. Inst. of RAS, 2024