RUS  ENG
Full version
PEOPLE

Kublanovskaya Vera Nikolaevna

Publications in Math-Net.Ru

  1. To solving problems of algebra for two-parameter matrices. 10

    Zap. Nauchn. Sem. POMI, 405 (2012),  170–185
  2. To solving spectral problems for $q$-parameter polynomial matrices. 3

    Zap. Nauchn. Sem. POMI, 405 (2012),  164–169
  3. To solving spectral problems for $q$-parameter polynomial matrices. 2

    Zap. Nauchn. Sem. POMI, 395 (2011),  162–171
  4. To solving the eigenvalue problem for polynomial matrices of general form

    Zap. Nauchn. Sem. POMI, 395 (2011),  154–161
  5. To solving inverse eigenvalue problems for matrices

    Zap. Nauchn. Sem. POMI, 395 (2011),  142–153
  6. To solving problems of algebra for two-parameter matrices. 9

    Zap. Nauchn. Sem. POMI, 395 (2011),  124–141
  7. To solving spectral problems for $q$-parameter polynomial matrices

    Zap. Nauchn. Sem. POMI, 382 (2010),  168–183
  8. To solving problems of algebra for two-parameter matrices. 8

    Zap. Nauchn. Sem. POMI, 382 (2010),  150–167
  9. To solving problems of algebra for two-parameter matrices. 7

    Zap. Nauchn. Sem. POMI, 382 (2010),  141–149
  10. To solving problems of algebra for two-parameter matrices. 6

    Zap. Nauchn. Sem. POMI, 367 (2009),  171–186
  11. To solving problems of algebra for two-parameter matrices. 5

    Zap. Nauchn. Sem. POMI, 367 (2009),  145–170
  12. To solving problems of algebra for two-parameter matrices. 4

    Zap. Nauchn. Sem. POMI, 367 (2009),  121–144
  13. To solving problems of algebra for two-parameter matrices. 3

    Zap. Nauchn. Sem. POMI, 359 (2008),  166–207
  14. To solving problems of algebra for two-parameter matrices. 2

    Zap. Nauchn. Sem. POMI, 359 (2008),  150–165
  15. To solving problems of algebra for two-parameter polynomial matrices. 1

    Zap. Nauchn. Sem. POMI, 359 (2008),  107–149
  16. To solving multiparameter problems of algebra. 11. Computing the regular spectrum of a polynomial matrix

    Zap. Nauchn. Sem. POMI, 346 (2007),  131–148
  17. To solving multiparameter problems of algebra. 10. Computing zeros of a scalar polynomial

    Zap. Nauchn. Sem. POMI, 346 (2007),  119–130
  18. To solving inverse eigenvalue problems for parametric matrices

    Zap. Nauchn. Sem. POMI, 334 (2006),  174–192
  19. To solving multiparameter problems of algebra. 9. The $\Psi F$-$q$ method for factorizing invariant polynomials and its applications

    Zap. Nauchn. Sem. POMI, 334 (2006),  165–173
  20. To solving multiparameter problems of algebra. 8. The $RP$-$q$ method and its applications

    Zap. Nauchn. Sem. POMI, 334 (2006),  149–164
  21. To solving multiparameter problems of algebra. 7. The $PG$-$q$ factorization method and its applications

    Zap. Nauchn. Sem. POMI, 323 (2005),  150–163
  22. To solving multiparameter problems of algebra. 6. Spectral characteristics of polynomial matrices

    Zap. Nauchn. Sem. POMI, 323 (2005),  132–149
  23. Modifications of the $\Delta W$-$q$ factorization method for multiparameter polynomial matrices and their properties

    Zap. Nauchn. Sem. POMI, 309 (2004),  154–165
  24. To solving multiparameter problems of algebra. 5. The $\nabla V$-$q$ factorization algorithm and its applications

    Zap. Nauchn. Sem. POMI, 309 (2004),  144–153
  25. To solving multiparameter problems of algebra. 4. The $AB$-algorithm and its applications

    Zap. Nauchn. Sem. POMI, 309 (2004),  127–143
  26. The solution of spectral problems for polynomial matrices

    Zap. Nauchn. Sem. POMI, 296 (2003),  122–138
  27. To solving multiparameter problems of algebra. 3. Cylindrical manifolds of the regular spectrum of a matrix

    Zap. Nauchn. Sem. POMI, 296 (2003),  108–121
  28. To solving multiparameter problems of algebra. 2. The method of partial relative factorization and its applications

    Zap. Nauchn. Sem. POMI, 296 (2003),  89–107
  29. To the solution of partial eigenproblems for polynomial matrices

    Zap. Nauchn. Sem. POMI, 284 (2002),  163–176
  30. To solving multiparameter problems of algebra 1. Methods for computing complete polynomials and their applications

    Zap. Nauchn. Sem. POMI, 284 (2002),  143–162
  31. Computing the invariant polynomials of a polynomial matrix. 2

    Zap. Nauchn. Sem. POMI, 284 (2002),  128–142
  32. Computing the invariant polynomials of a polinomial matrix. 1

    Zap. Nauchn. Sem. POMI, 284 (2002),  123–127
  33. The application of the rank-factorization method to the analysis of spectral characteristics of a polynomial multiparameter matrix

    Zap. Nauchn. Sem. POMI, 268 (2000),  115–144
  34. An approach to solving inverse eigenvalue problems for matrices

    Zap. Nauchn. Sem. POMI, 268 (2000),  95–114
  35. The contribution of D. K. Faddeev to the development of computational methods in linear algebra

    Zh. Vychisl. Mat. Mat. Fiz., 39:2 (1999),  183–186
  36. Irreducible factorizations of $q$-parameter rational matrices

    Zap. Nauchn. Sem. POMI, 248 (1998),  147–164
  37. Solution of arbitrary systems of nonlinear algebraic equations. Methods and algorithms. IV

    Zap. Nauchn. Sem. POMI, 248 (1998),  124–146
  38. Solution of the Cauchy problem. Methods and algorithms

    Zap. Nauchn. Sem. POMI, 248 (1998),  70–123
  39. Development of some ideas of D. K. Faddeev and V. N. Faddeeva in computational algebra

    Zh. Vychisl. Mat. Mat. Fiz., 38:12 (1998),  1955–1961
  40. Methods and algorithms of solving spectral problems for polynomial and rational mathrices

    Zap. Nauchn. Sem. POMI, 238 (1997),  7–328
  41. Relative factorization of polynomials of several variables

    Zh. Vychisl. Mat. Mat. Fiz., 36:8 (1996),  6–11
  42. On a method for estimating unremovable error

    Zh. Vychisl. Mat. Mat. Fiz., 36:7 (1996),  11–14
  43. An approach to solving multiparameter algebraic problems

    Zap. Nauchn. Sem. POMI, 229 (1995),  191–246
  44. Solution of systems of nonlinear algebraic equations in three variables. Methods and algorithms. 3

    Zap. Nauchn. Sem. POMI, 229 (1995),  159–190
  45. Least square method for matrices dependent on parameters

    Zap. Nauchn. Sem. POMI, 219 (1994),  176–185
  46. Operations with scalar polynomials and their computer realization

    Zap. Nauchn. Sem. POMI, 219 (1994),  158–175
  47. On irreducible factorization of rational matrices and their applications

    Zap. Nauchn. Sem. POMI, 219 (1994),  117–157
  48. On certain factorizations of two-parameter polynomial matrices

    Zap. Nauchn. Sem. POMI, 219 (1994),  94–116
  49. Inversion of polynomial and rational matrices

    Zap. Nauchn. Sem. POMI, 202 (1992),  97–109
  50. An approach to solving nonlinear algebraic systems. 2

    Zap. Nauchn. Sem. POMI, 202 (1992),  71–96
  51. Spectral problems for pencils of polynomial matrices. Methods and algorithms. V

    Zap. Nauchn. Sem. POMI, 202 (1992),  26–70
  52. Some factorizations of matrix and scalar polynomials

    Algebra i Analiz, 2:6 (1990),  168–177
  53. The contribution of V. N. Faddeeva and D. K. Faddeev in the development of computational methods in linear algebra

    Algebra i Analiz, 2:6 (1990),  34–39
  54. An algorithm for computing the spectral structure of a singular linear matrix pencil

    Zap. Nauchn. Sem. LOMI, 159 (1987),  23–32
  55. Construction of a fundamental series of solutions of a pencil of matrices

    Zap. Nauchn. Sem. LOMI, 139 (1984),  74–93
  56. A general approach to the reduction of a regular linear pencil to a pencil of quasitriangular form

    Zh. Vychisl. Mat. Mat. Fiz., 24:12 (1984),  1775–1788
  57. On constructing a fundamental row of polynomial solutions and Jordam chains for singular linear pencil

    Zap. Nauchn. Sem. LOMI, 124 (1983),  101–113
  58. Certain modifications of the $AB$-algorithm

    Zap. Nauchn. Sem. LOMI, 111 (1981),  117–136
  59. Spectral problem for polynomial matrix pencils. 2

    Zap. Nauchn. Sem. LOMI, 111 (1981),  109–116
  60. The algorithm AB and its properties

    Zap. Nauchn. Sem. LOMI, 102 (1980),  42–60
  61. Problem of eigenvalues for regular linear pencil of matrices being close to singular ones

    Zap. Nauchn. Sem. LOMI, 90 (1979),  63–82
  62. Construction of canonical basis for matrices and pencils of matrices

    Zap. Nauchn. Sem. LOMI, 90 (1979),  46–62
  63. Connection between the spectral problem for linear matrix pencils and some problems of algebra

    Zap. Nauchn. Sem. LOMI, 80 (1978),  98–116
  64. Spectral problem for polynomial pencils of matrices

    Zap. Nauchn. Sem. LOMI, 80 (1978),  83–97
  65. On the solution of the spectral problem for a singular pencil of matrices

    Zh. Vychisl. Mat. Mat. Fiz., 18:4 (1978),  1056–1060
  66. Solving the eigenvalue problem for matrices

    Zap. Nauchn. Sem. LOMI, 70 (1977),  124–139
  67. Solution of the eigenvalue problem for a regular pencil $\lambda A_0-A_1$ with singular matrices

    Zap. Nauchn. Sem. LOMI, 70 (1977),  103–123
  68. Analysis of singular matrix pencils

    Zap. Nauchn. Sem. LOMI, 70 (1977),  89–102
  69. Solving the eigenvalue problem for sparse matrices

    Zap. Nauchn. Sem. LOMI, 58 (1976),  92–110
  70. Eigenvalue problem for an irregular $\lambda$-matrix

    Zap. Nauchn. Sem. LOMI, 58 (1976),  80–92
  71. Two-sided approximations in the $LR$-algorithm

    Zap. Nauchn. Sem. LOMI, 58 (1976),  67–71
  72. Solving a nonlinear spectral problem for a matrix

    Zap. Nauchn. Sem. LOMI, 58 (1976),  54–66
  73. On the solution of linear algebraic systems

    Zh. Vychisl. Mat. Mat. Fiz., 16:6 (1976),  1578–1579
  74. On the solution of the addition eigenvalues problem for the matrix

    Zap. Nauchn. Sem. LOMI, 48 (1974),  12–17
  75. On solving of some problems with sparse matrices

    Zap. Nauchn. Sem. LOMI, 35 (1973),  75–94
  76. On solving of the nonlinear matrix eigenvalue problem

    Zap. Nauchn. Sem. LOMI, 35 (1973),  67–74
  77. Normalized scheme of square method and its application for solving some problems of algebra

    Zap. Nauchn. Sem. LOMI, 35 (1973),  56–66
  78. Newton's method for the determination of the eigenvalues and eigenvectors of a matrix

    Zh. Vychisl. Mat. Mat. Fiz., 12:6 (1972),  1371–1380
  79. Application of a normalized process to the solution of linear algebraic systems

    Zh. Vychisl. Mat. Mat. Fiz., 12:5 (1972),  1091–1098
  80. On one inverse eigenvalue problem of matrix

    Zap. Nauchn. Sem. LOMI, 23 (1971),  84–93
  81. An application of normalized process to the solution of the inverse eigenvalue problem of matrix

    Zap. Nauchn. Sem. LOMI, 23 (1971),  72–83
  82. An application of orthogonal transformations to the solution of nonlinear sistems

    Zap. Nauchn. Sem. LOMI, 23 (1971),  53–71
  83. On one approach to the solution of inverse eigenvalues problem

    Zap. Nauchn. Sem. LOMI, 18 (1970),  138–149
  84. Solution of a partial eigenvalues problem for some special form matrices

    Zap. Nauchn. Sem. LOMI, 18 (1970),  104–115
  85. An application of orthogonal transformations to the numerical realization of linear algebraic problems on perturbation

    Zh. Vychisl. Mat. Mat. Fiz., 10:2 (1970),  429–433
  86. The application of Newton's method to the determination of the eigenvalues of $\lambda$ -matrices

    Dokl. Akad. Nauk SSSR, 188:5 (1969),  1004–1005
  87. An iteration process for obtaining small eigenvalues of a matrix and the corresponding eigenvectors

    Trudy Mat. Inst. Steklov., 96 (1968),  93–104
  88. Solution of linear algebraic systems with rectangular matrices

    Trudy Mat. Inst. Steklov., 96 (1968),  76–92
  89. On a method of solving the complete eigenvalue problem for a degenerate matrix

    Zh. Vychisl. Mat. Mat. Fiz., 6:4 (1966),  611–620
  90. On a method for the triangular factorization of an inverse matrix

    Zh. Vychisl. Mat. Mat. Fiz., 6:3 (1966),  555–556
  91. Evaluation of a generalized inverse matrix and projector

    Zh. Vychisl. Mat. Mat. Fiz., 6:2 (1966),  326–332
  92. An algorithm for calculating the eigenvalues of positive-definite matrices

    Trudy Mat. Inst. Steklov., 84 (1965),  5–7
  93. A process for improving the orthogonalization of a vector system

    Zh. Vychisl. Mat. Mat. Fiz., 5:2 (1965),  326–329
  94. Some inequalities for the eigenvalues of a positive definite matrix

    Zh. Vychisl. Mat. Mat. Fiz., 5:1 (1965),  107–111
  95. A computing scheme for the Jacobi process

    Zh. Vychisl. Mat. Mat. Fiz., 4:4 (1964),  732–733
  96. Reduction of an arbitrary matrix to the tridiagonal form

    Zh. Vychisl. Mat. Mat. Fiz., 4:3 (1964),  544
  97. A method of reorthogonalization of a system of vectors

    Zh. Vychisl. Mat. Mat. Fiz., 4:2 (1964),  338–340
  98. Computational methods for the solution of the general eigenvalue problem

    Trudy Mat. Inst. Steklov., 66 (1962),  147–165
  99. Application of the staircase method, and of the $LR$ and $\Lambda P$ algorithms to matrices decomposed into blocks

    Trudy Mat. Inst. Steklov., 66 (1962),  136–146
  100. Solution of the eigenvalue problem for an arbitrary matrix

    Trudy Mat. Inst. Steklov., 66 (1962),  113–135
  101. On certain iteration processes for the symmetrisation of a matrix

    Zh. Vychisl. Mat. Mat. Fiz., 2:5 (1962),  760–767
  102. Certain algorithms for the solution of the complete problem of eigenvalues

    Dokl. Akad. Nauk SSSR, 136:1 (1961),  26–28
  103. On some algorithms for the solution of the complete eigenvalue problem

    Zh. Vychisl. Mat. Mat. Fiz., 1:4 (1961),  555–570
  104. Zeros of Hankel functions and certain other functions associated with them

    Trudy Mat. Inst. Steklov., 53 (1959),  186–191
  105. Application of analytic continuation by means of change of variables in numerical analysis

    Trudy Mat. Inst. Steklov., 53 (1959),  145–185

  106. On the occasion of the centenary of the birthday of Vera Nikolaevna Faddeeva

    Zap. Nauchn. Sem. POMI, 334 (2006),  7–12
  107. Dmitrii Konstantinovich Faddeev (on his eightieth birthday)

    Uspekhi Mat. Nauk, 44:3(267) (1989),  187–193
  108. Dmitrii Konstantinovich Faddeev (on his seventieth birthday)

    Uspekhi Mat. Nauk, 34:2(206) (1979),  223–228
  109. Méthodes de calcul numérique. 2. Elements de theorie des matrices carrees et rectangles en analyse numérique: A. Korganoff and M. Pavel-Parvu. Paris, Dunod, XX+441 p., 1967

    Zh. Vychisl. Mat. Mat. Fiz., 9:5 (1969),  1224–1225
  110. Numerical methods of algebra (theory and algorithms). Chislennye metody algebry (teoriya i algoritmy): V. V. Voevodin, Moscow, Nauka, 1966 pp. 248

    Zh. Vychisl. Mat. Mat. Fiz., 7:6 (1967),  1430–1431
  111. Determinanten und matrizen: Kochendorfer, R., Leipzig, 1963. Book review

    Zh. Vychisl. Mat. Mat. Fiz., 5:2 (1965),  386–387


© Steklov Math. Inst. of RAS, 2025