RUS  ENG
Full version
PEOPLE

Nikitin Yakov Yurievich

Publications in Math-Net.Ru

  1. Bahadur efficiency of EDF based normality tests when parameters are estimated

    Zap. Nauchn. Sem. POMI, 501 (2021),  203–217
  2. On the average perimeter of the inscribed random polygon

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7:1 (2020),  77–84
  3. Limit theorems for areas and perimeters of random inscribed and circumscribed polygons

    Zap. Nauchn. Sem. POMI, 486 (2019),  200–213
  4. Goodness-of-fit tests based on the characterization of uniformity by the ratio of order statistics, and their efficiencies

    Zap. Nauchn. Sem. POMI, 466 (2017),  67–80
  5. Asymptotic efficiency of new distribution-free tests of symmetry for generalized skew alternatives

    Zap. Nauchn. Sem. POMI, 454 (2016),  82–101
  6. Kolmogorov tests of normality based on some variants of Polya's characterization

    Zap. Nauchn. Sem. POMI, 441 (2015),  263–273
  7. Exponentiality tests based on Ahsanullah's characterization and their efficiencies

    Zap. Nauchn. Sem. POMI, 412 (2013),  69–87
  8. The exact asymptotic of small deviations for a series of Brownian functionals

    Teor. Veroyatnost. i Primenen., 57:1 (2012),  98–123
  9. Goodness-of-fit tests for the power function distribution based on Puri–Rubin characterization and their efficiencies

    Zap. Nauchn. Sem. POMI, 408 (2012),  115–130
  10. On the efficiency of tests of fit based on the Deheuvels' empirical process

    Zap. Nauchn. Sem. POMI, 361 (2008),  66–77
  11. On asymptotic efficiency and local optimality of tests based on two-sample $U$- and $V$-statistics

    Zap. Nauchn. Sem. POMI, 351 (2007),  219–231
  12. A test of exponentiality versus alternatives containing the RNBUE class derived from the Laplace empirical transform

    Zap. Nauchn. Sem. POMI, 339 (2006),  63–77
  13. Two families of normality tests based on Polya characterization, and their efficiency

    Zap. Nauchn. Sem. POMI, 328 (2005),  147–159
  14. Logarithmic $L_2$-small ball asymptotics for some fractional Gaussian processes

    Teor. Veroyatnost. i Primenen., 49:4 (2004),  695–711
  15. Sharp small ball asymptotics for Slepian and Watson processes in Hilbert norm

    Zap. Nauchn. Sem. POMI, 320 (2004),  120–128
  16. Sharp small deviation asymptotics in $L_2-$norm for a class of Gaussian processes

    Zap. Nauchn. Sem. POMI, 311 (2004),  214–221
  17. Exact small ball constants for some Gaussian processes under $L^2$-norm

    Zap. Nauchn. Sem. POMI, 298 (2003),  5–21
  18. Pitman efficiency of tests for independence based on weighted rank statistics

    Zap. Nauchn. Sem. POMI, 278 (2001),  159–176
  19. Rates of convergence for a class of rank tests for independence

    Zap. Nauchn. Sem. POMI, 260 (1999),  155–163
  20. A generalization of Kendall's tau and asymptotic efficiency of the corresponding test of independence

    Zap. Nauchn. Sem. POMI, 244 (1997),  227–237
  21. New integral nonparametric test for the hypothesis of affine symmetry

    Zap. Nauchn. Sem. POMI, 228 (1996),  77–93
  22. On conditions of chernoff local asymptotic optimality of some nonparametric symmetry tests

    Zap. Nauchn. Sem. POMI, 207 (1993),  101–108
  23. On conditions of Bahadur local optimality of weighted Kolmogorov–Smirnov statistics

    Zap. Nauchn. Sem. LOMI, 194 (1992),  21–27
  24. Local Chernoff and Hodges–Lehmann efficiencies of linear rank symmetry tests

    Zap. Nauchn. Sem. LOMI, 184 (1990),  215–226
  25. Chernoff efficiency of the sign and Wilcoxon tests for testing of symmetry

    Zap. Nauchn. Sem. LOMI, 177 (1989),  101–107
  26. The Bahadur efficiency and local asymptotic optimality of some non-parametric tests of independence

    Zap. Nauchn. Sem. LOMI, 166 (1988),  112–128
  27. On Hodges–Lehman Asymptotical Efficiency of Nonparametric Goodness-of-fit and Homogeneity Tests

    Teor. Veroyatnost. i Primenen., 32:1 (1987),  82–91
  28. Bahadur efficiency of the Watson–Darling goodness-of-fit tests

    Zap. Nauchn. Sem. LOMI, 158 (1987),  138–145
  29. On asymptotic efficiency of Kolmogorov–Smirnov-type tests for symmetry for random sample size

    Zap. Nauchn. Sem. LOMI, 153 (1986),  122–128
  30. Hodges–Lehmann asymptotic efficiency of the Kolmogorov and Smirnov goodness-of-fit tests

    Zap. Nauchn. Sem. LOMI, 142 (1985),  119–123
  31. Local Bahadur optimality and characterization problems

    Teor. Veroyatnost. i Primenen., 29:1 (1984),  79–92
  32. On large deviation of Durbin's statistic for testing uniformity on the square

    Zap. Nauchn. Sem. LOMI, 136 (1984),  165–167
  33. Asymptotic comparison of some nonparametric tests with the test of Student

    Zap. Nauchn. Sem. LOMI, 130 (1983),  147–149
  34. Bahadur efficiency of integral type of symmetry

    Zap. Nauchn. Sem. LOMI, 119 (1982),  181–194
  35. Characterization of distributions by the property of local asymptotic optimality of test statistics

    Zap. Nauchn. Sem. LOMI, 108 (1981),  119–133
  36. Bahadur efficiency of $\omega^2$-type criteria in the several sample case

    Zap. Nauchn. Sem. LOMI, 98 (1980),  140–148
  37. Large deviations and asymptotic efficiency of integral type statistics. II

    Zap. Nauchn. Sem. LOMI, 97 (1980),  151–175
  38. Large deviations and asymptotic efficiency of integral type statistics. I

    Zap. Nauchn. Sem. LOMI, 85 (1979),  175–187
  39. Bahadur relative asymptotic efficiency of statistics based on the empirical distribution function

    Dokl. Akad. Nauk SSSR, 231:4 (1976),  802–805
  40. Limit distributions and Bahadur efficiencies for Kolmogorov–Smirnov-type statistics with random indices

    Zap. Nauchn. Sem. LOMI, 55 (1976),  185–194
  41. On a boundary-value problem for an empirical process

    Dokl. Akad. Nauk SSSR, 205:5 (1972),  1043–1045
  42. Estimates of the rate of convergence of some limit theorems and statistical criteria

    Dokl. Akad. Nauk SSSR, 202:4 (1972),  758–760

  43. International conference “Asymptotic problems of probability theory and mathematical statistics” to honor I. A. Ibragimov’s 80th birthday

    Teor. Veroyatnost. i Primenen., 57:3 (2012),  622
  44. Abram Meerovich Kagan (on his 70th birthday)

    Uspekhi Mat. Nauk, 62:6(378) (2007),  198–200
  45. Il'dar Abdullovich Ibragimov (on his 70th birthday)

    Uspekhi Mat. Nauk, 57:5(347) (2002),  187–190
  46. Book review: Boldin M. V., Simonova G. I., Tyurin Yu. N. “Signed stochastical analysis of linear models”

    Teor. Veroyatnost. i Primenen., 44:3 (1999),  685–687


© Steklov Math. Inst. of RAS, 2024