RUS  ENG
Full version
PEOPLE

Kachalov Alexander Pavlovich

Publications in Math-Net.Ru

  1. The ray type solution for the wave of finite deformation in the physically linear nonlinear inhomogeneous elastic medium

    Zap. Nauchn. Sem. POMI, 438 (2015),  118–132
  2. The ray type solution for the finite deformation waves in a physically linear nonlinear inhomogeneous medium

    Zap. Nauchn. Sem. POMI, 422 (2014),  47–61
  3. Computations of Rayleigh waves in anisotropic elastic media and impedance

    Zap. Nauchn. Sem. POMI, 409 (2012),  40–48
  4. Rayleigh waves in an anisotropic elastic medium and impedance

    Zap. Nauchn. Sem. POMI, 393 (2011),  125–143
  5. Quasijets in anisotropic media, Finsler geometry, and Fermi coordinates

    Zap. Nauchn. Sem. POMI, 332 (2006),  48–69
  6. Gaussian beams, the Hamilton–Jacobi equations and Finsler geometry

    Zap. Nauchn. Sem. POMI, 297 (2003),  66–92
  7. Gaussian beams for the Maxwell equations on a mainfold

    Zap. Nauchn. Sem. POMI, 285 (2002),  58–87
  8. Nonstationary electromagnetic Gaussian beams in nonhomogeneous anysotropic media

    Zap. Nauchn. Sem. POMI, 264 (2000),  83–100
  9. The multidimensional inverse Gel'fand problem with incomplete boundary spectral data

    Dokl. Akad. Nauk, 346:5 (1996),  587–589
  10. Operator integral in multidimensional spectral Inverse Problem

    Zap. Nauchn. Sem. POMI, 215 (1994),  9–37
  11. Boundary controls and quasiphotons in a Riemannian manifold reconstruction problem via dynamical data

    Zap. Nauchn. Sem. POMI, 203 (1992),  21–50
  12. Space-time Gaussian beams of the electromagnetic waves

    Zap. Nauchn. Sem. LOMI, 186 (1990),  115–121
  13. Transformation operator method for inverse scattering problem

    Zap. Nauchn. Sem. LOMI, 179 (1989),  73–87
  14. Application of boundary control theory methods to spectral inverse problem for inhomogeneous string

    Zap. Nauchn. Sem. LOMI, 179 (1989),  14–22
  15. Asymptotics of the Jost-function for the two-dimensional Schrödinger operator

    Zap. Nauchn. Sem. LOMI, 173 (1988),  96–103
  16. Two-parameter asymptotic formulas for space-time Gaussian beams in an elastic media

    Zap. Nauchn. Sem. LOMI, 173 (1988),  87–95
  17. Application of Gaussian beam method to the computations of theoretical seisinograms

    Zap. Nauchn. Sem. LOMI, 156 (1986),  73–97
  18. Application of “quaaiphotons” to the computations of wave fields in elasticity media

    Zap. Nauchn. Sem. LOMI, 148 (1985),  89–103
  19. A coordinate system for describing the “quasiphoton”

    Zap. Nauchn. Sem. LOMI, 140 (1984),  73–76
  20. Space-time ray method for waves of small deformation in a nonlinear elastic medium

    Zap. Nauchn. Sem. LOMI, 140 (1984),  61–72
  21. On validity of Gaussian beams summation method in problems with corner points on boundaries

    Zap. Nauchn. Sem. LOMI, 128 (1983),  65–71
  22. Application of the Gaussian beam summation method for the computation of wave fields in the high-frequency approximation

    Dokl. Akad. Nauk SSSR, 258:5 (1981),  1097–1100
  23. The weak inhomogeneous optical fiber

    Zap. Nauchn. Sem. LOMI, 117 (1981),  134–146
  24. Behavior of the roots of the equation $w'_1(z)+\sigma w_1(z)=0$

    Zap. Nauchn. Sem. LOMI, 78 (1978),  90–94
  25. Some equations for the problem of diffraction by a convex shell

    Zap. Nauchn. Sem. LOMI, 62 (1976),  124–125
  26. Ray method for flexural vibrations of a shell immersed in a liquid

    Zap. Nauchn. Sem. LOMI, 62 (1976),  111–123
  27. Elastic Wave Propagation in Piezodielectric Medium

    Zap. Nauchn. Sem. LOMI, 42 (1974),  155–161


© Steklov Math. Inst. of RAS, 2025