RUS  ENG
Full version
PEOPLE

Osipenko Georgy Sergeevich

Publications in Math-Net.Ru

  1. Mean Convergence of Periodic Pseudotrajectories and Invariant Measures of Dynamical Systems

    Mat. Zametki, 108:6 (2020),  882–898
  2. Encodings of trajectories and invariant measures

    Mat. Sb., 211:7 (2020),  151–176
  3. The spectrum of the averaging of a function over pseudotrajectories of a dynamical system

    Mat. Sb., 209:8 (2018),  114–137
  4. Lyapunov Exponents and Invariant Measures on a Projective Bundle

    Mat. Zametki, 101:4 (2017),  549–561
  5. Structural stability and symbolic image

    Differ. Uravn., 42:4 (2006),  468–475
  6. Estimating Characteristic Exponents by Methods of Symbolic Dynamics

    Differ. Uravn., 38:4 (2002),  460–470
  7. Testing the transversality condition by the methods of symbolic dynamics

    Differ. Uravn., 26:9 (1990),  1528–1536
  8. Application of theorems on the perturbation of invariant manifolds

    Differ. Uravn., 25:9 (1989),  1526–1532
  9. Examples of perturbations of invariant manifolds

    Differ. Uravn., 25:6 (1989),  943–950
  10. Perturbation of invariant manifolds. IV

    Differ. Uravn., 24:6 (1988),  987–993
  11. Perturbation of invariant manifolds. III

    Differ. Uravn., 23:5 (1987),  818–825
  12. Perturbation of invariant manifolds. II

    Differ. Uravn., 21:8 (1985),  1337–1344
  13. Perturbation of invariant manifolds. I

    Differ. Uravn., 21:4 (1985),  615–623
  14. Invariant foliations and partial hyperbolicity

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 3,  71–76
  15. Structural stability of systems of differential equations

    Differ. Uravn., 20:11 (1984),  1897–1906
  16. Some global bifurcations

    Differ. Uravn., 19:11 (1983),  2004–2006
  17. Integrability of invariant plane fields, separation and partial hyperbolicity

    Differ. Uravn., 19:10 (1983),  1687–1693
  18. Submanifolds of codimension $1$ and the perturbation of homogeneous systems

    Differ. Uravn., 17:12 (1981),  2274–2277
  19. Dynamical structural stability

    Differ. Uravn., 17:9 (1981),  1692–1695
  20. On the problem of linearization in the neighborhood of invariant manifolds

    Differ. Uravn., 17:4 (1981),  638–642
  21. Perturbation of dynamical systems near invariant manifolds. II

    Differ. Uravn., 16:4 (1980),  620–628
  22. Perturbation of dynamical systems near invariant manifolds. I

    Differ. Uravn., 15:11 (1979),  1967–1979
  23. The behavior of the solutions of differential equations near invariant manifolds

    Differ. Uravn., 15:2 (1979),  262–271
  24. Dynamic equivalence near invariant manifolds

    Differ. Uravn., 14:9 (1978),  1703–1705
  25. The trajectories of quasihomogeneous systems of differential equations

    Differ. Uravn., 14:2 (1978),  223–231
  26. The local dynamical equivalence of differential equations

    Differ. Uravn., 12:12 (1976),  2193–2200
  27. The topological equivalence of differential equations

    Differ. Uravn., 11:8 (1975),  1366–1374
  28. On a homotopy invariant

    Differ. Uravn., 11:6 (1975),  1139–1140
  29. The problems of Frommer

    Differ. Uravn., 10:6 (1974),  1015–1024
  30. The removal of the singularity of a differential equation in a certain case

    Differ. Uravn., 9:6 (1973),  1146–1148

  31. Third International Conference “Tools for Mathematical Modelling”

    Avtomat. i Telemekh., 2002, no. 3,  187–188


© Steklov Math. Inst. of RAS, 2025