RUS  ENG
Full version
PEOPLE

Repin Sergey Igorevich

Publications in Math-Net.Ru

  1. A posteriori identities for measures of deviation from exact solutions of nonlinear boundary value problems

    Zh. Vychisl. Mat. Mat. Fiz., 63:6 (2023),  896–919
  2. A posteriori error identities for parabolic convection–diffusion problems

    Zap. Nauchn. Sem. POMI, 519 (2022),  205–228
  3. Error control for approximate solutions of a class of singularly perturbed boundary value problems

    Zh. Vychisl. Mat. Mat. Fiz., 62:11 (2022),  1822–1839
  4. Error identities for parabolic initial boundary value problems

    Zap. Nauchn. Sem. POMI, 508 (2021),  147–172
  5. A posteriori error control of approximate solutions to boundary value problems constructed by neural networks

    Zap. Nauchn. Sem. POMI, 499 (2021),  77–104
  6. Identity for deviations from the exact solution of the problem $\Lambda^*\mathcal{A}\Lambda u+l=0$ and its implications

    Zh. Vychisl. Mat. Mat. Fiz., 61:12 (2021),  1986–2009
  7. Estimates of the distance to the solution of an evolutionary problem obtained by linearization of the Navier–Stokes equation

    Zap. Nauchn. Sem. POMI, 489 (2020),  67–80
  8. Biharmonic obstacle problem: guaranteed and computable error bounds for approximate solutions

    Zh. Vychisl. Mat. Mat. Fiz., 60:11 (2020),  1881–1897
  9. Estimates of the deviation from exact solutions of boundary value problems in measures stronger than the energy norm

    Zh. Vychisl. Mat. Mat. Fiz., 60:5 (2020),  767–783
  10. A posteriori estimates for the stationary Stokes problem in exterior domains

    Algebra i Analiz, 31:3 (2019),  184–215
  11. On projectors to subspaces of vector valued functions subject to conditions of the divergence free type

    Zap. Nauchn. Sem. POMI, 459 (2017),  83–103
  12. On variational representations of the constant in the inf sup condition for the Stokes problem

    Zap. Nauchn. Sem. POMI, 444 (2016),  110–123
  13. Estimates of the distance to the set of divergence free fields

    Zap. Nauchn. Sem. POMI, 425 (2014),  99–116
  14. Estimates of the distance to the exact solution of parabolic problems based on local Poincaré type inequalities

    Zap. Nauchn. Sem. POMI, 425 (2014),  7–34
  15. Estimates of deviations from exact solution of the generalized Oseen problem

    Zap. Nauchn. Sem. POMI, 410 (2013),  110–130
  16. Estimates of deviations from exact solution of the Stokes problem in the vorticity-velocity-pressure formulation

    Zap. Nauchn. Sem. POMI, 397 (2011),  73–88
  17. Some Poincaré-type inequalities for functions of bounded deformation involving the deviatoric part of the symmetric gradient

    Zap. Nauchn. Sem. POMI, 385 (2010),  224–233
  18. Estimates of deviations from exact solutions of variational problems with linear growth functionals

    Zap. Nauchn. Sem. POMI, 370 (2009),  132–150
  19. Two-sided a posteriori error bounds for electro-magneto static problems

    Zap. Nauchn. Sem. POMI, 370 (2009),  94–110
  20. A posteriori estimates for a generalized Stokes problem

    Zap. Nauchn. Sem. POMI, 362 (2008),  272–302
  21. Functional a posteriori estimates for elliptic variational inequalities

    Zap. Nauchn. Sem. POMI, 348 (2007),  147–164
  22. Functional a posteriori error estimates for the reaction-convection-diffusion problem

    Zap. Nauchn. Sem. POMI, 348 (2007),  127–146
  23. Estimates of the deviation from the minimizer for variational problems with power growth functionals

    Zap. Nauchn. Sem. POMI, 336 (2006),  5–24
  24. A Posteriori Error Estimates for Approximate Solutions of Linear Parabolic Problems

    Differ. Uravn., 41:7 (2005),  925–937
  25. On error estimates for approximate solutions in problems of the linear theory of thermoelasticity

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 1,  64–72
  26. Estimates of deviation from the exact solutions for some boundary-value problems with incompressibilily condition

    Algebra i Analiz, 16:5 (2004),  124–161
  27. Local a posteriori estimates for the Stokes problem

    Zap. Nauchn. Sem. POMI, 318 (2004),  233–245
  28. On the estimate of deviations from the exact solution of the Reissner–Mindlin plate problem

    Zap. Nauchn. Sem. POMI, 310 (2004),  145–157
  29. Estimates of deviations for generalized Newtonian fluids

    Zap. Nauchn. Sem. POMI, 288 (2002),  178–203
  30. A posteriori error estimates for approximate solutions to boundary problem of elliptic equations

    Zh. Vychisl. Mat. Mat. Fiz., 42:12 (2002),  1774–1787
  31. Estimates of deviations from exact solutions of elliptic variational inequalities

    Zap. Nauchn. Sem. POMI, 271 (2000),  188–203
  32. A posteriori estimates for the accuracy of variational methods for problems with nonconvex functionals

    Algebra i Analiz, 11:4 (1999),  151–182
  33. A posteriori estimates for the Stokes problem

    Zap. Nauchn. Sem. POMI, 259 (1999),  195–211
  34. A posteriori error estimates for approximate solutions of variational problems with power growtn functionals

    Zap. Nauchn. Sem. POMI, 249 (1997),  244–255
  35. A posteriori error estimation for nonlinear variational problems by duality theory

    Zap. Nauchn. Sem. POMI, 243 (1997),  201–214
  36. Numerical modelling of discontinuous solution of perfectly elasto-plastic problems

    Matem. Mod., 8:4 (1996),  113–127
  37. A priori error estimates of variational-difference methods for Hencky plasticity problems

    Zap. Nauchn. Sem. POMI, 221 (1995),  226–234
  38. On the approximation of solutions of variational problems in the theory of ideal plasticity

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 9,  60–69
  39. Variational formulations for discontinuous displacement fields in problems of ideal plasticity

    Dokl. Akad. Nauk SSSR, 320:6 (1991),  1340–1344
  40. A variational-difference method of solving problems with functionals of linear growth

    Zh. Vychisl. Mat. Mat. Fiz., 29:5 (1989),  693–708
  41. A variational difference method for solving problems of ideal plasticity in which discontinuities may appear

    Zh. Vychisl. Mat. Mat. Fiz., 28:3 (1988),  449–453
  42. Minimization of a class of non-differentiable functionals by a relaxation method

    Zh. Vychisl. Mat. Mat. Fiz., 27:7 (1987),  976–983

  43. On the 90th birthday of Vsevolod Alekseevich Solonnikov

    Uspekhi Mat. Nauk, 78:5(473) (2023),  187–198
  44. Preface

    Zap. Nauchn. Sem. POMI, 499 (2021),  5–6
  45. To Solonnikov's jubilee

    Zap. Nauchn. Sem. POMI, 362 (2008),  5–14
  46. To the jubillee of O. A. Ladyzhenskaya

    Zap. Nauchn. Sem. POMI, 288 (2002),  5–13


© Steklov Math. Inst. of RAS, 2024