Scientific interests: The Fourier–Laplace, Cauchy transforms; in the plane domain in terms of the Cauchy transform is obtained. Description of the dual space to Bergman spaces in plane convex domain in terms of the Laplace transform is obtained.
Main publications:
V. V. Napalkov (Jr.), “Orthosimilar expansion systems in space with reproducing kernel”, Ufa Math. Journal, 5:4 (2013), 88–100
V. V. Napalkov (jr.), “An equivalent integral norm in a dual space”, Ufimsk. Mat. Zh., 3:4 (2011), 122–132
V. V. Napalkov (Jr.), “On orthosimilar systems in a space of analytical functions and the problem of describing the dual space”, Ufa Math. Journal, 3:1 (2011), 30–41
V. V., Napalkov, V. V. Napalkov (ml.), “Sopryazhennye operatory v prostranstvakh tipa Foka”, Doklady Akademii Nauk, 414:5 (2007), 591–593
V. V. Napalkov (Jr.), “Analogue of the Fock space”, Integral transform and special functions, Taylor & Francis Group, 18:2 (2007), 133–138
V. V. Napalkov (ml.), “Razlichnye predstavleniya prostranstva analiticheskikh funktsii i zadacha opisaniya sopryazhennogo prostranstva”, Doklady Akademii Nauk, 387:2 (2002), 164–167 , Napalkov V. V. (Jr.) “Various representation of the space of analytics functions and the problem of the dual space description”, Doklady Mathematics, V.66, N3, P.335–337.
V. V. Napalkov (Jr.), R. S. Yulmukhametov, “On the Hilbert Transform in Bergman Space”, Math. Notes, 70:1 (2001), 61–70
V. V. Napalkov Jr.and R. S. Yulmukhametov, “Criterion of surjectivity of the Cauchy transform operator on a Bergman space”, Lyubich, Yu. (ed.) et al., Entire functions in modern analysis. Boris Levin memorial conference., Proceedings of the conference (Tel-Aviv, Israel, December 14-19, 1997. Ramat-Gan: Bar-Ilan University), Gelbart Research Institute for Mathematical Sciences, Isr. Math. Conf. Proc., 15, 2001, 261–267
V. V. Napalkov (Jr.), “Borel transformations on Dirichlet spaces”, Math. Notes, 60:1 (1996), 42–48
V. V. Napalkov (Jr.), R. S. Yulmukhametov, “Weighted Fourier–Laplace transforms of analytic functionals on the disk”, Russian Acad. Sci. Sb. Math., 77:2 (1994), 385–390