RUS  ENG
Full version
PEOPLE

Krylov Piotr Andreevich

Publications in Math-Net.Ru

  1. Automorphisms of incidence algebras

    Fundam. Prikl. Mat., 25:3 (2025),  81–111
  2. Some isomorphisms between incidence algebras and group algebras

    Algebra Logika, 63:1 (2024),  30–38
  3. On some linear mappings of incidence coalgebras

    Applied Mathematics & Physics, 56:4 (2024),  273
  4. Isomorphisms of incidence algebras

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 92,  19–28
  5. Incidence rings and their automorphisms

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 91,  41–50
  6. On automorphisms and derivations of reduced incidence algebras and coalgebras

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 90,  33–39
  7. On realization and isomorphism problems for formal matrix rings

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 219 (2023),  39–43
  8. Automorphisms of matrix rings

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 219 (2023),  16–38
  9. Tensor product of incidence algebras and group algebras

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 84,  5–13
  10. $k$-good formal matrix rings of infinite order

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 6,  35–42
  11. Automorphism groups of formal matrix rings

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 164 (2019),  96–124
  12. Modules over discrete valuation domains. III

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 164 (2019),  74–95
  13. E-groups and E-rings

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 159 (2019),  111–132
  14. sp-Groups and their endomorphism rings

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 159 (2019),  68–110
  15. Around Baer–Kaplansky theorem

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 159 (2019),  46–67
  16. Automorphisms of formal matrix algebras

    Sibirsk. Mat. Zh., 59:5 (2018),  1116–1127
  17. Group of automorphisms of one class of formal matrix algebras

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 53,  16–21
  18. Determinants of generalized matrices of order $2$

    Fundam. Prikl. Mat., 20:5 (2015),  95–112
  19. On some classes of Hopfian Abelian groups and modules

    Fundam. Prikl. Mat., 20:5 (2015),  61–68
  20. Grothendieck and Whitehead groups of formal matrix rings

    Fundam. Prikl. Mat., 20:1 (2015),  173–203
  21. Formal matrices and their determinants

    Fundam. Prikl. Mat., 19:1 (2014),  65–119
  22. Calculation of the group $K_1$ of a generalized matrix ring

    Sibirsk. Mat. Zh., 55:4 (2014),  783–789
  23. The group $K_0$ of a generalized matrix ring

    Algebra Logika, 52:3 (2013),  370–385
  24. Molin, scientist and educationalist

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2011, no. 3(15),  6–11
  25. Colocalizations and dualities for modules and Abelian groups

    Fundam. Prikl. Mat., 16:7 (2010),  161–180
  26. Idempotent functors and localizations in categories of modules and Abelian groups

    Fundam. Prikl. Mat., 16:7 (2010),  75–159
  27. On a property of Abelian groups related to direct sums and products

    Fundam. Prikl. Mat., 16:7 (2010),  39–47
  28. Injective modules over formal matrix rings

    Sibirsk. Mat. Zh., 51:1 (2010),  90–97
  29. Modules over formal matrix rings

    Fundam. Prikl. Mat., 15:8 (2009),  145–211
  30. Isomorphism of generalized matrix rings

    Algebra Logika, 47:4 (2008),  456–463
  31. Projective and hereditary modules over generalized matrix ring

    Fundam. Prikl. Mat., 14:5 (2008),  125–138
  32. The group $\operatorname{Hom}(A,B)$ as an Artinian $\operatorname{E}(B)$- or $\operatorname{E}(A)$-module

    Fundam. Prikl. Mat., 13:3 (2007),  81–96
  33. The radicals of endomorphism rings of Abelian groups

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2007, no. 1,  17–27
  34. The Jacobson Radical of an Endomorphism Ring for an Abelian Group

    Algebra Logika, 43:1 (2004),  60–76
  35. When Is the Group $\operatorname{Hom}(A,B)$ an Injective $E(B)$-Module?

    Mat. Zametki, 75:1 (2004),  100–108
  36. Hereditary endomorphism rings of mixed Abelian groups

    Sibirsk. Mat. Zh., 43:1 (2002),  108–119
  37. Affine Module Groups and Their Automorphisms

    Algebra Logika, 40:1 (2001),  60–82
  38. The tensor product of abelian groups as a Noetherian module over an endomorphism ring

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 4,  16–23
  39. Abelian Groups and Regular Modules

    Mat. Zametki, 69:3 (2001),  402–411
  40. Torsion-free abelian groups with a large number of endomorphisms

    Trudy Inst. Mat. i Mekh. UrO RAN, 7:2 (2001),  194–207
  41. Mixed Abelian groups as modules over their endomorphism rings

    Fundam. Prikl. Mat., 6:3 (2000),  793–812
  42. The center of the endomorphism ring of a split mixed abelian group

    Sibirsk. Mat. Zh., 40:5 (1999),  1074–1085
  43. Abelian groups as injective modules over endomorphism rings

    Fundam. Prikl. Mat., 4:4 (1998),  1365–1384
  44. When is the extension group $Ext(A,B)$ torsion-free?

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 10,  33–41
  45. On two problems concerning extension groups of Abelian groups

    Mat. Sb., 185:1 (1994),  73–94
  46. Direct sums of strongly homogeneous abelian groups

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 2,  65–68
  47. Completely transitive torsion-free abelian groups

    Algebra Logika, 29:5 (1990),  549–560
  48. On modules with complete rings of endomorphisms

    Uspekhi Mat. Nauk, 45:4(274) (1990),  159–160
  49. A class of quasipure injective Abelian groups

    Mat. Zametki, 45:4 (1989),  53–58
  50. Torsion-free abelian groups with hereditary endomorphism rings

    Algebra Logika, 27:3 (1988),  295–304
  51. Endogenerating abelian groups

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 12,  52–55
  52. A class of abelian groups with hereditary endomorphism rings

    Sibirsk. Mat. Zh., 28:6 (1987),  60–65
  53. Strongly homogeneous torsion-free abelian groups

    Sibirsk. Mat. Zh., 24:2 (1983),  77–84
  54. Abelian torsion-free groups and their rings of endomorphisms

    Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 11,  26–33
  55. Sums of automorphisms of abelian groups, and the Jacobson radical of the endomorphism ring

    Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 4,  56–66
  56. Torsion-free Abelian groups with cyclic $p$-basic subgroups

    Mat. Zametki, 20:6 (1976),  805–813
  57. Radicals of endomorphism rings of torsion-free Abelian groups

    Mat. Sb. (N.S.), 95(137):2(10) (1974),  214–228
  58. Extension of isomorphisms in abelian $p$-groups

    Mat. Zametki, 14:4 (1973),  543–548

  59. Andrey Rostislavovich Chekhlov (to the 65th anniversary of his birth)

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 88,  179–185
  60. Alexander Alexandrovich Fomin (to the 70th anniversary)

    Chebyshevskii Sb., 20:2 (2019),  579–582
  61. To the 110th anniversary of Sergei Antonovich Chunikhin

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 1(39),  115–124
  62. Grinshpon Samuil Yakovlevich (on the occasion of the 65th anniversary)

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 4(20),  131–134
  63. The first head of the Department of Algebra in Tomsk State University

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 3(19),  107–112
  64. Заметки об истории кафедры алгебры Томского государственного университета

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2011, no. 3(15),  127–138
  65. Mishina Anna Petrovna

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2008, no. 1(2),  97–99


© Steklov Math. Inst. of RAS, 2025