RUS  ENG
Full version
PEOPLE

Sviridyuk Georgy Anatolevich

Publications in Math-Net.Ru

  1. Information processing in a numerical study for some stochastic Wentzell systems of the hydrodynamic equations in a ball and on its boundary

    J. Comp. Eng. Math., 11:3 (2024),  3–15
  2. Analysis of the Wentzell stochastic system composed of the equations of unpressurised filtration in the hemisphere and at its boundary

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 17:1 (2024),  86–96
  3. Analysis of the system of Wentzell equations in the circle and on its boundary

    J. Comp. Eng. Math., 10:1 (2023),  12–20
  4. Analysis of the stochastic Wentzell system of fluid filtration equations in a circle and on its boundary

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 15:3 (2023),  15–22
  5. An analysis of the Wentzell stochastic system of the equations of moisture filtration in a ball and on its boundary

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 16:4 (2023),  84–92
  6. The Avalos – Triggiani problem for the linear oskolkov system and a system of wave equaions. II

    J. Comp. Eng. Math., 9:2 (2022),  67–72
  7. The Showalter-Sidorov and Cauchy problems for the linear Dzekzer equation with Wentzell and Robin boundary conditions in a bounded domain

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 14:1 (2022),  50–63
  8. Development of the theory of optimal dynamic measurement

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:3 (2022),  19–33
  9. The Avalos–Triggiani problem for the linear Oskolkov system and a system of wave equations

    Zh. Vychisl. Mat. Mat. Fiz., 62:3 (2022),  437–441
  10. Reconstruction of a dynamically distorted signal based on the theory of optimal dynamic measurements

    Avtomat. i Telemekh., 2021, no. 12,  125–137
  11. Numerical optimal measurement algorithm under distortions caused by inertia, resonances, and sensor degradation

    Avtomat. i Telemekh., 2021, no. 1,  55–67
  12. Non-uniqueness of solutions to boundary value problems with Wentzell condition

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 14:4 (2021),  102–105
  13. The optimal measurements theory as a new paradigm in the metrology

    J. Comp. Eng. Math., 7:1 (2020),  3–23
  14. Positive solutions to Sobolev type equations with relatively $p$-sectorial operators

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:2 (2020),  17–32
  15. Mathematical model of acoustic waves in a bounded domain with “white noise”

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 11:3 (2019),  12–19
  16. Exponential dichotomies in Barenblatt– Zheltov–Kochina model in spaces of differential forms with “noise”

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:2 (2019),  47–57
  17. Multipoint initial-final problem for one class of Sobolev type models of higher order with additive "white noise"

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:3 (2018),  103–117
  18. Sobolev type mathematical models with relatively positive operators in the sequence spaces

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 9:4 (2017),  27–35
  19. Some mathematical models with a relatively bounded operator and additive “white noise” in spaces of sequences

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:4 (2017),  5–14
  20. The Barenblatt – Zheltov – Kochina model with additive white noise in quasi-Sobolev spaces

    J. Comp. Eng. Math., 3:1 (2016),  61–67
  21. Nonclassical equations of mathematical physics. Linear Sobolev type equations of higher order

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 8:4 (2016),  5–16
  22. Nonclassical equations of mathematical physics. Phase space of semilinear Sobolev type equations

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 8:3 (2016),  31–51
  23. The Oskolkov equations on the geometric graphs as a mathematical model of the traffic flow

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:3 (2015),  148–154
  24. The mathematical modelling of the production of construction mixtures with prescribed properties

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:1 (2015),  100–110
  25. The theory of optimal measurements

    J. Comp. Eng. Math., 1:1 (2014),  3–16
  26. The Dynamical Models of Sobolev Type with Showalter–Sidorov Condition and Additive “Noise”

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:1 (2014),  90–103
  27. On the Measurement of the «White Noise»

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 13,  99–108
  28. On the numerical solution convergence of optimal control problems for Leontief type system

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(23) (2011),  24–33
  29. The Showalter–Sidorov problem as a phenomena of the Sobolev-type equations

    Bulletin of Irkutsk State University. Series Mathematics, 3:1 (2010),  104–125
  30. Hoff Equation Stability on a Graph

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(20) (2010),  6–15
  31. A new approach to measurement of dynamically perturbed signals

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2010, no. 5,  116–120
  32. Stability of solutions of Oskolkov linear equations on a geometrical graph

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(19) (2009),  9–16
  33. On Direct and Inverse Problems for the Hoff Equations on Graph

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(18) (2009),  6–17
  34. The phase spaces of a class of linear higher-order Sobolev type equations

    Differ. Uravn., 42:2 (2006),  252–260
  35. Hoff equations on graphs

    Differ. Uravn., 42:1 (2006),  126–131
  36. Invariant manifolds of the Hoff equation

    Mat. Zametki, 79:3 (2006),  444–449
  37. On the Phase Space Fold of a Nonclassical Equation

    Differ. Uravn., 41:10 (2005),  1400–1405
  38. The phase space of a nonclassical model

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 11,  47–52
  39. A Whitney fold in the phase space of the Hoff equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 10,  54–60
  40. An optimal control problem for the Hoff equation

    Sib. Zh. Ind. Mat., 8:2 (2005),  144–151
  41. The Phase Space of the Cauchy–Dirichlet Problem for a Nonclassical Equation

    Differ. Uravn., 39:11 (2003),  1556–1561
  42. The phase space of the Cauchy–Dirichlet problem for the Oskolkov equation of nonlinear filtration

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 9,  36–41
  43. Numerical solution of systems of equations of Leontief type

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 8,  46–52
  44. On the Verigin problem for the generalized Boussinesq filtration equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 7,  54–58
  45. The phase space of one generalized model by Oskolkov

    Sibirsk. Mat. Zh., 44:5 (2003),  1124–1131
  46. Задача Коши для уравнения Баренблатта–Желтова–Кочиной на гладком многообразии

    Vestnik Chelyabinsk. Gos. Univ., 2003, no. 9,  171–177
  47. Задача Коши для линейного уравнения Осколкова на гладком многообразии

    Vestnik Chelyabinsk. Gos. Univ., 2003, no. 7,  146–153
  48. An algorithm for solving the Cauchy problem for degenerate linear systems of ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 43:11 (2003),  1677–1683
  49. Verigin's Problem for Linear Equations of the Sobolev Type with Relatively $p$-Sectorial Operators

    Differ. Uravn., 38:12 (2002),  1646–1652
  50. An Optimal Control Problem for the Oskolkov Equation

    Differ. Uravn., 38:7 (2002),  997–998
  51. Regular Perturbations of a Class of Sobolev Type Linear Equations

    Differ. Uravn., 38:3 (2002),  423–425
  52. The Phase Space of an Initial-Boundary Value Problem for the Hoff Equation

    Mat. Zametki, 71:2 (2002),  292–297
  53. Полугруппы операторов с ядрами

    Vestnik Chelyabinsk. Gos. Univ., 2002, no. 6,  42–70
  54. Морфология фазовых пространств одного класса линейных уравнений типа Соболева высокого порядка

    Vestnik Chelyabinsk. Gos. Univ., 1999, no. 5,  87–102
  55. Морфология фазового пространства одного класса полулинейных уравнений типа Соболева

    Vestnik Chelyabinsk. Gos. Univ., 1999, no. 5,  68–86
  56. On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid

    Mat. Zametki, 63:3 (1998),  442–450
  57. On units of analytic semigroups of operators with kernels

    Sibirsk. Mat. Zh., 39:3 (1998),  604–616
  58. The Cauchy problem for a class of higher-order linear equations of Sobolev type

    Differ. Uravn., 33:10 (1997),  1410–1418
  59. Relative $\sigma$-boundedness of linear operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 7,  68–73
  60. Invariant spaces and dichotomies of solutions of a class of linear equations of the Sobolev type

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 5,  60–68
  61. The phase space of the initial-boundary value problem for the Oskolkov system

    Differ. Uravn., 32:11 (1996),  1538–1543
  62. An optimal control problem for a class of linear equations of Sobolev type

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 12,  75–83
  63. Заметки о линейных моделях вязкоупругих сред

    Vestnik Chelyabinsk. Gos. Univ., 1996, no. 3,  135–147
  64. Necessary and sufficient conditions for the relative $\sigma$-boundedness of linear operators

    Dokl. Akad. Nauk, 345:1 (1995),  25–27
  65. Optimal control of Sobolev-type linear equations with relatively $p$-spectorial operators

    Differ. Uravn., 31:11 (1995),  1912–1919
  66. Analytic semigroups with kernel and linear equations of Sobolev type

    Sibirsk. Mat. Zh., 36:5 (1995),  1130–1145
  67. Phase portraits of Sobolev-type semilinear equations with a relatively strongly sectorial operator

    Algebra i Analiz, 6:5 (1994),  252–272
  68. Sobolev-type linear equations and strongly continuous semigroups of resolving operators with kernels

    Dokl. Akad. Nauk, 337:5 (1994),  581–584
  69. Phase space for Sobolev type equations with $s$-monotone and strongly coercive operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 11,  75–82
  70. On a model of the dynamics of a weakly compressible viscoelastic fluid

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 1,  62–70
  71. Whitney folds in phase spaces of some semilinear Sobolev-type equations

    Mat. Zametki, 55:3 (1994),  3–10
  72. On the general theory of operator semigroups

    Uspekhi Mat. Nauk, 49:4(298) (1994),  47–74
  73. Фазовое пространство одного класса линейных операторных дифференциальных уравнений

    Vestnik Chelyabinsk. Gos. Univ., 1994, no. 2,  112–116
  74. Phase spaces of linear dynamical equations of Sobolev type

    Dokl. Akad. Nauk, 330:6 (1993),  696–699
  75. Semilinear equations of Sobolev type with a relatively sectorial operator

    Dokl. Akad. Nauk, 329:3 (1993),  274–277
  76. Quasistationary trajectories of semilinear dynamical equations of Sobolev type

    Izv. RAN. Ser. Mat., 57:3 (1993),  192–207
  77. Solvability of the Cauchy problem for linear singular equations of evolution type

    Differ. Uravn., 28:3 (1992),  508–515
  78. Deborah's number and a class of semilinear equations of Sobolev type

    Dokl. Akad. Nauk SSSR, 319:5 (1991),  1082–1086
  79. Semilinear equations of Sobolev type with a relatively bounded operator

    Dokl. Akad. Nauk SSSR, 318:4 (1991),  828–831
  80. Метод фазового пространства в теории полулинейных уравнений типа Соболева

    Vestnik Chelyabinsk. Gos. Univ., 1991, no. 1,  149
  81. Об одной гипотезе в теории полулинейных уравнений типа Соболева

    Vestnik Chelyabinsk. Gos. Univ., 1991, no. 1,  144–145
  82. Об одном приложении теории особенностей гладких отображений

    Vestnik Chelyabinsk. Gos. Univ., 1991, no. 1,  143–144
  83. Некоторые приложения теории линейных уравнений типа Соболева

    Vestnik Chelyabinsk. Gos. Univ., 1991, no. 1,  142–143
  84. Медленные многообразия одного класса полулинейных уравнений типа Соболева

    Vestnik Chelyabinsk. Gos. Univ., 1991, no. 1,  3–19
  85. A problem of the dynamics of a viscoelastic incompressible fluid

    Differ. Uravn., 26:11 (1990),  1992–1998
  86. Phase spaces of a class of operator semilinear equations of Sobolev type

    Differ. Uravn., 26:2 (1990),  250–258
  87. Solvability of a problem of the thermoconvection of a viscoelastic incompressible fluid

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 12,  65–70
  88. The Cauchy problem for a class of semilinear equations of Sobolev type

    Sibirsk. Mat. Zh., 31:5 (1990),  109–119
  89. Rapid-slow dynamics of viscoelastic media

    Dokl. Akad. Nauk SSSR, 308:4 (1989),  791–794
  90. Manifolds of solutions of a class of evolution and dynamic equations

    Dokl. Akad. Nauk SSSR, 304:2 (1989),  301–304
  91. A problem of Showalter

    Differ. Uravn., 25:2 (1989),  338–339
  92. Galerkin approximations of singular nonlinear equations of Sobolev type

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 10,  44–47
  93. A problem for the generalized Boussinesq filtration equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 2,  55–61
  94. On the manifold of solutions of a problem on the dynamics of an incompressible viscoelastic fluid

    Differ. Uravn., 24:10 (1988),  1832–1834
  95. Solvability of an inhomogeneous problem for the generalized Boussinesq filtration equation

    Differ. Uravn., 24:9 (1988),  1607–1611
  96. A model for the dynamics of an incompressible viscoelastic fluid

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 1,  74–79
  97. The Cauchy problem for a linear singular operator equation of Sobolev type

    Differ. Uravn., 23:12 (1987),  2168–2171
  98. The Cauchy problem for a linear operator equation of Sobolev type with a nonpositive operator multiplying the derivative

    Differ. Uravn., 23:10 (1987),  1823–1826
  99. A singular system of ordinary differential equations

    Differ. Uravn., 23:9 (1987),  1637–1639
  100. The manifold of solutions of an operator singular pseudoparabolic equation

    Dokl. Akad. Nauk SSSR, 289:6 (1986),  1315–1318

  101. In memory of Valentin Kuropatenko

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 16:1 (2024),  67–70
  102. Oleg Slavin – to the 60th birthday anniversary

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 15:4 (2023),  93–94
  103. Soloviev Sergey Yurievich (02/03/1955 - 09/22/2023). In memory of an outstanding algorithmist

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 16:4 (2023),  106–107
  104. Alexander Leonidovich Shestakov (to Anniversary Since Birth)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:3 (2022),  142–146
  105. Sergey Leonidovich Chernyshev (to Anniversary Since Birth)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:2 (2022),  125–127
  106. Evnin Alexander Yurevich (September 24, 1960 – November 19, 2020)

    J. Comp. Eng. Math., 8:1 (2021),  74–48
  107. Sergey Grigorievich Pyatkov (on 65th birthday)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 14:1 (2021),  131–133
  108. To the 65th anniversary of Vasiliy Buchel'nikov

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 12:2 (2020),  63–65
  109. Prof. Hristo Kirilov Radev, DSc. (November 15, 1940 – June 09, 2020)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:4 (2020),  122–123
  110. Nikolai Aleksandrovich Sidorov (on 80th birthday)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:4 (2020),  119–121
  111. Vladimir Evgenievich Pavlovsky (22.05.1950–03.06.2020)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:3 (2020),  116–118
  112. Veniamin Gennadievich Mokhov (on 70th birthday)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:3 (2020),  112–115
  113. Tamara Gennadievna Sukacheva (on anniversary)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:2 (2020),  151–153
  114. Jacek Banasiak (on 60th birthday)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:2 (2019),  172–174
  115. Yu.I. Sapronov. To the memory of mathematician, teacher and friend

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019),  166–168
  116. To the 70th anniversary of professor Yu.E. Gliklikh

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019),  163–165
  117. Shestakov Alexander Leonidovich (to the 65th anniversary)

    J. Comp. Eng. Math., 4:3 (2017),  55–67
  118. Valentin Fedorovich Kuropatenko (1933–2017)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:4 (2017),  151–152
  119. Anatoliy Semenovich Makarov. To the 70$^{\mathrm{th}}$ anniversary

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 8:1 (2016),  72–75
  120. Ivan Egorovich Egorov (to the 65th anniversary)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:4 (2016),  155–158
  121. On the scientific and pedagogical activity of professor A. I. Kibzun

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:3 (2016),  152–157
  122. Sergey Grigorievich Pyatkov (to the 60th anniversary)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:2 (2016),  139–144
  123. Sergei Ivanovich Kadchenko (to the 65th anniversary)

    J. Comp. Eng. Math., 2:4 (2015),  100–102
  124. Alfredo Lorenzi (1944–2013)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:3 (2015),  155–156
  125. Nikolay Aleksandrovich Sidorov (to the 75th Anniversary)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:2 (2015),  143–148
  126. Vladimir Alekseevich Kostin (to the 75th anniversary)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:3 (2014),  135–140
  127. Международное сотрудничество

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:2 (2014),  136–137
  128. Kuropatenko Valentin Fedorovich (to the $80^{th}$ anniversary)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:1 (2014),  139–141
  129. Leonid Menikhes (to the $65^{th}$ anniversary)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:3 (2013),  136–140
  130. Nonclassical Mathematical Physics Models

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 14,  7–18
  131. Alexander Drozin (to the 60$^{th}$ anniversary)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 8,  115–120
  132. Optimal measurement of dynamically distorted signals

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 8,  70–75
  133. All-Russian student competition on mathematics

    Uspekhi Mat. Nauk, 50:3(303) (1995),  189–190


© Steklov Math. Inst. of RAS, 2024