RUS  ENG
Full version
PEOPLE

Antipin Anatoly Sergeevich

Publications in Math-Net.Ru

  1. Antisymmetric extremal mapping and linear dynamics

    Zh. Vychisl. Mat. Mat. Fiz., 65:3 (2025),  258–274
  2. Synthesis of a regulator for a linear-quadratic optimal control problem

    Zh. Vychisl. Mat. Mat. Fiz., 64:9 (2024),  1618–1634
  3. Dynamics, phase constraints, and linear programming

    Zh. Vychisl. Mat. Mat. Fiz., 60:2 (2020),  177–196
  4. Feedback synthesis for a terminal control problem

    Zh. Vychisl. Mat. Mat. Fiz., 58:12 (2018),  1973–1991
  5. Optimization methods for the sensitivity function with constraints

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017),  33–42
  6. Dynamics and variational inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 57:5 (2017),  783–800
  7. Extragradient method for solving an optimal control problem with implicitly specified boundary conditions

    Zh. Vychisl. Mat. Mat. Fiz., 57:1 (2017),  49–54
  8. Extragradient method for finding a saddle point in a multicriteria problem with dynamics

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  71–78
  9. Multicriteria boundary value problem in dynamics

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  20–29
  10. Linear programming and dynamics

    Ural Math. J., 1:1 (2015),  3–19
  11. Dynamic method of multipliers in terminal control

    Zh. Vychisl. Mat. Mat. Fiz., 55:5 (2015),  776–797
  12. A Boundary Value Problem of Terminal Control with a Quadratic Criterion of Quality

    Bulletin of Irkutsk State University. Series Mathematics, 8 (2014),  7–28
  13. Optimal control with connected initial and terminal conditions

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  13–28
  14. Terminal control of boundary models

    Zh. Vychisl. Mat. Mat. Fiz., 54:2 (2014),  257–285
  15. Linear programming and dynamics

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013),  7–25
  16. A second-order iterative method for solving quasi-variational inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 53:3 (2013),  336–342
  17. A regularized differential extraproximal method for finding an equilibrium in two-person saddle-point games

    Num. Meth. Prog., 13:1 (2012),  149–160
  18. Regularized extraproximal method for finding equilibrium points in two-person saddle-point games

    Zh. Vychisl. Mat. Mat. Fiz., 52:7 (2012),  1231–1241
  19. The method of modified Lagrange function for optimal control problem

    Bulletin of Irkutsk State University. Series Mathematics, 4:2 (2011),  27–44
  20. Regularized extragradient method for finding a saddle point in an optimal control problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:1 (2011),  27–37
  21. Sensitivity function: Properties and applications

    Zh. Vychisl. Mat. Mat. Fiz., 51:12 (2011),  2126–2142
  22. A second-order continuous method for solving quasi-variational inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 51:11 (2011),  1973–1980
  23. Extraproximal method for solving two-person saddle-point games

    Zh. Vychisl. Mat. Mat. Fiz., 51:9 (2011),  1576–1587
  24. Extragradient methods for optimal control problems with linear restrictions

    Bulletin of Irkutsk State University. Series Mathematics, 3:3 (2010),  2–20
  25. Regularized extragradient method for solving parametric multicriteria equilibrium programming problem

    Zh. Vychisl. Mat. Mat. Fiz., 50:12 (2010),  2083–2098
  26. Multicriteria equilibrium programming: the extragradient method

    Zh. Vychisl. Mat. Mat. Fiz., 50:2 (2010),  234–241
  27. Equilibrium model of a credit market: Statement of the problem and solution methods

    Zh. Vychisl. Mat. Mat. Fiz., 49:3 (2009),  465–481
  28. Saddle problem and optimization problem as an integrated system

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:2 (2008),  5–15
  29. Multicriteria equilibrium programming: Extraproximal methods

    Zh. Vychisl. Mat. Mat. Fiz., 47:12 (2007),  1998–2013
  30. A regularized Newton method for solving equilibrium programming problems with an inexactly specified set

    Zh. Vychisl. Mat. Mat. Fiz., 47:1 (2007),  21–33
  31. Methods for solving unstable equilibrium programming problems with coupled variables

    Trudy Inst. Mat. i Mekh. UrO RAN, 12:1 (2006),  48–63
  32. Newton's method for solving equilibrium problems

    Num. Meth. Prog., 7:3 (2006),  202–210
  33. Extraproximal approach to calculating equilibriums in pure exchange models

    Zh. Vychisl. Mat. Mat. Fiz., 46:10 (2006),  1771–1783
  34. Methods for solving equilibrium programming problems

    Differ. Uravn., 41:1 (2005),  3–11
  35. An extraproximal method for solving equilibrium programming problems and games with coupled variables

    Zh. Vychisl. Mat. Mat. Fiz., 45:12 (2005),  2102–2111
  36. An extraproximal method for solving equilibrium programming problems and games

    Zh. Vychisl. Mat. Mat. Fiz., 45:11 (2005),  1969–1990
  37. A two-person game in mixed strategies as a model of training

    Zh. Vychisl. Mat. Mat. Fiz., 45:9 (2005),  1566–1574
  38. Regularization methods with penalty functions for finding nash equilibria in a bilinear nonzero-sum two-person game

    Zh. Vychisl. Mat. Mat. Fiz., 45:5 (2005),  813–823
  39. A regularized extragradient method for solving equilibrium programming problems with an inexactly specified set

    Zh. Vychisl. Mat. Mat. Fiz., 45:4 (2005),  650–660
  40. Regularization methods for solving equilibrium programming problems with coupled constraints

    Zh. Vychisl. Mat. Mat. Fiz., 45:1 (2005),  27–40
  41. Regularized prediction method for solving variational inequalities with an inexactly given set

    Zh. Vychisl. Mat. Mat. Fiz., 44:5 (2004),  796–804
  42. Solving Two-Person Nonzero-Sum Games with the Help of Differential Equations

    Differ. Uravn., 39:1 (2003),  12–22
  43. A regularized extra-gradient method for solving the equilibrium programming problems

    Zh. Vychisl. Mat. Mat. Fiz., 43:10 (2003),  1451–1458
  44. A Regularized Continuous Extragradient Method of the First Order with a Variable Metric for Problems of Equilibrium Programming

    Differ. Uravn., 38:12 (2002),  1587–1595
  45. Multiplier methods in bilinear equilibrium programming with application to nonzero-sum games

    Trudy Inst. Mat. i Mekh. UrO RAN, 8:1 (2002),  3–30
  46. A regularized extragradient method for solving variational inequalities

    Num. Meth. Prog., 3:1 (2002),  237–244
  47. A regularized first-order continuous extragradient method with variable metric for solving the problems of equilibrium programming with an inexact set

    Num. Meth. Prog., 3:1 (2002),  211–221
  48. Regularization methods, based on the extension of a set, for solving an equilibrium programming problem with inexact input data

    Zh. Vychisl. Mat. Mat. Fiz., 42:8 (2002),  1158–1165
  49. A residual method for equilibrium problems with an inexcactly specified set

    Zh. Vychisl. Mat. Mat. Fiz., 41:1 (2001),  3–8
  50. Solving variational inequalities with coupling constraints with the use of differential equations

    Differ. Uravn., 36:11 (2000),  1443–1451
  51. Solution methods for variational inequalities with coupled constraints

    Zh. Vychisl. Mat. Mat. Fiz., 40:9 (2000),  1291–1307
  52. The interior linearization method for equilibrium programming problems

    Zh. Vychisl. Mat. Mat. Fiz., 40:8 (2000),  1142–1162
  53. Second-order controlled differential gradient methods for solving equilibrium problems

    Differ. Uravn., 35:5 (1999),  590–599
  54. A stabilization method for equilibrium programming problems with an approximately given set

    Zh. Vychisl. Mat. Mat. Fiz., 39:11 (1999),  1779–1786
  55. A differential linearization method in equilibrium programming

    Differ. Uravn., 34:11 (1998),  1445–1458
  56. The differential controlled gradient method for symmetric extremal mappings

    Differ. Uravn., 34:8 (1998),  1018–1028
  57. Splitting of the gradient approach for solving extreme inclusions

    Zh. Vychisl. Mat. Mat. Fiz., 38:7 (1998),  1118–1132
  58. Balanced Programming: Gradient-Type Methods

    Avtomat. i Telemekh., 1997, no. 8,  125–137
  59. The method of splitting differential gradient equations for extremal inclusions

    Differ. Uravn., 33:11 (1997),  1451–1461
  60. Computation of fixed points of symmetric extremal mappings

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 12,  3–15
  61. Continuous linearization method with a variable metric for problems in convex programming

    Zh. Vychisl. Mat. Mat. Fiz., 37:12 (1997),  1459–1466
  62. Equilibrium programming: Proximal methods

    Zh. Vychisl. Mat. Mat. Fiz., 37:11 (1997),  1327–1339
  63. Calculation of fixed points of extremal mappings by gradient-type methods

    Zh. Vychisl. Mat. Mat. Fiz., 37:1 (1997),  42–53
  64. Differential gradient systems for solving equilibrium programming problems

    Differ. Uravn., 32:11 (1996),  1443–1451
  65. A two-step linearization method for minimization problems

    Zh. Vychisl. Mat. Mat. Fiz., 36:4 (1996),  18–25
  66. Computation of fixed points of extremal mappings

    Dokl. Akad. Nauk, 342:3 (1995),  300–303
  67. On differential gradient methods of predictive type for computing fixed points of extremal mappings

    Differ. Uravn., 31:11 (1995),  1786–1795
  68. On a continuous minimization method in spaces with a variable metric

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 12,  3–9
  69. Iterative methods of predictive type for computing fixed points of extremal mappings

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 11,  17–27
  70. Estimates for the rate of convergence of the gradient projection method

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 6,  16–24
  71. The convergence of proximal methods to fixed points of extremal mappings and estimates of their rate of convergence

    Zh. Vychisl. Mat. Mat. Fiz., 35:5 (1995),  688–704
  72. Saddle gradient feedback-controlled processes

    Avtomat. i Telemekh., 1994, no. 3,  12–23
  73. On the finite convergence of processes to a sharp minimum and a smooth minimum with a sharp derivative

    Differ. Uravn., 30:11 (1994),  1843–1854
  74. Minimization of convex functions on convex sets by means of differential equations

    Differ. Uravn., 30:9 (1994),  1475–1486
  75. A three-step method of linearization for minimization problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 12,  3–7
  76. Controlled gradient saddle differential systems

    Dokl. Akad. Nauk, 333:6 (1993),  693–695
  77. Proximal differential systems with feedback control

    Dokl. Akad. Nauk, 329:2 (1993),  119–121
  78. Feedback-controlled second-order proximal differential systems

    Differ. Uravn., 29:11 (1993),  1843–1855
  79. An interior linearization method

    Zh. Vychisl. Mat. Mat. Fiz., 33:12 (1993),  1776–1791
  80. Controlled proximal differential systems for solving saddle problems

    Differ. Uravn., 28:11 (1992),  1846–1861
  81. On models of interaction between manufacturers, consumers, and the transportation system

    Avtomat. i Telemekh., 1989, no. 10,  105–113
  82. Methods of solving systems of convex programming problems

    Zh. Vychisl. Mat. Mat. Fiz., 27:3 (1987),  368–376
  83. An equilibrium problem and methods for its solution

    Avtomat. i Telemekh., 1986, no. 9,  75–82
  84. Extrapolational methods for calculation of a saddle point of Lagrange function and their application to problems with separable block structure

    Zh. Vychisl. Mat. Mat. Fiz., 26:1 (1986),  150–151


© Steklov Math. Inst. of RAS, 2025