|
|
Publications in Math-Net.Ru
-
Study of Majorana bound states in the Kitaev model with imaginary potentials
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 35:1 (2025), 129–136
-
Spectral properties and non-Hermitian skin effect in the Hatano–Nelson model
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 34:2 (2024), 286–298
-
Eigenvalues and eigenfunctions of the perturbed non-Hermitian SSH Hamiltonian with PT symmetry
Izv. IMI UdGU, 62 (2023), 87–95
-
Andreev states in a quasi-one-dimensional superconductor on the surface of a topological insulator
TMF, 212:3 (2022), 414–428
-
Interaction between subbands in a quasi-one-dimensional superconductor
TMF, 210:3 (2022), 455–469
-
Behaviour of Andreev states for topological phase transition
TMF, 208:1 (2021), 145–162
-
Mutual transition of Andreev and Majorana bound states in a superconducting gap
TMF, 205:3 (2020), 484–501
-
The role of Majorana-like bound states in the Andreev reflection and the Josephson effect in the case of a topological insulator
TMF, 202:1 (2020), 81–97
-
Investigation of eigenvalues and scattering problem for the Bogoliubov–de Gennes Hamiltonian near the superconducting gap edge
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:2 (2020), 259–269
-
Andreev reflection in the $p$-wave superconductor–normal metal contact
Izv. IMI UdGU, 54 (2019), 55–62
-
Majorana states near an impurity in the Kitayev infinite and semi-infinite model
TMF, 200:1 (2019), 137–146
-
Existence of Majorana bounded states in a simple Josephson transition model
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:3 (2019), 351–362
-
Existence of Majorana bound states in a superconducting nanowire
near an impurity
TMF, 197:2 (2018), 279–289
-
Two-particle scattering in a periodic medium
TMF, 191:2 (2017), 304–318
-
Quasi-levels of the Hamiltonian for a carbon nanotube
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 4, 76–83
-
“Layerwise” scattering for a difference Schrödinger operator
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 1, 58–65
-
Electron scattering by a crystal layer
TMF, 176:3 (2013), 444–457
-
The discrete Schrödinger equation for a quantum waveguide
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 4, 80–93
-
Electron scattering at the domain wall
TMF, 166:2 (2011), 272–281
-
A discrete Schrödinger operator on a graph
TMF, 165:1 (2010), 119–133
-
Quasilevels of a two-particle Schrödinger operator with a perturbed periodic potential
TMF, 158:1 (2009), 115–125
-
Quasi-levels of the discrete Schrödinger equation with a decreasing potential on a graph
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2009, no. 3, 104–113
-
On quasi-levels of the discret two-particle Schrödinger operator with a decreasing small potential
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 1, 35–46
-
Decay law for a quasistationary state of the Schrödinger operator for a crystal film
TMF, 151:2 (2007), 248–260
-
Two-dimensional magnetic Schrodinger operator with a periodic exterior field
Izv. IMI UdGU, 2006, no. 1(35), 77–82
-
The levels of the two-particle Schrödinger operator corresponding to
a crystal film
TMF, 147:2 (2006), 229–239
-
Perturbation Theory of Resonances and Embedded Eigenvalues of the Schrodinger Operator For a Crystal Film
TMF, 143:3 (2005), 417–430
-
On levels of the one-dimensional discrete Schrödinger operator with a decreasing small potential
Izv. IMI UdGU, 2004, no. 1(29), 85–94
-
Schrödinger Operator Levels for a Crystal Film with a Nonlocal Potential
TMF, 140:2 (2004), 297–302
-
The Spectrum and Eigenfunctions of the Two-Dimensional Schrödinger Operator with a Magnetic Field
TMF, 134:2 (2003), 243–253
-
Schrödinger operator eigenvalue (resonance) on a zone boundary
TMF, 126:2 (2001), 196–205
-
Schrödinger operator with a perturbed small steplike potential
TMF, 120:2 (1999), 277–290
-
Resonance multiplicity of a perturbed periodic Schrödinger operator
TMF, 116:1 (1998), 134–145
-
On approximation of the “Membrane” Schrödinger operator by the “Crystal” operator
Mat. Zametki, 62:5 (1997), 773–781
-
On small perturbations of the Schrödinger equation with periodic potential
TMF, 110:3 (1997), 443–453
-
On Schrodinger equation for the plane film with the limit periodic lattice
TMF, 106:1 (1996), 133–144
-
Multidimensional discrete Schrödinger equation with limit periodic potential
TMF, 102:1 (1995), 74–82
-
Solutions of the Schrödinger equation in the case of a semiinfinite crystal
TMF, 98:1 (1994), 38–47
-
On the Schrödinger operator with a small potential in the case of a crystal film
Mat. Zametki, 52:2 (1992), 138–143
-
Floquet asymptotics of solutions of the Schrödinger equation in the case of a semi-infinite crystal
TMF, 77:3 (1988), 472–478
-
Scattering for the Schrödinger operator in the case of a crystal film
TMF, 72:1 (1987), 120–131
-
Vector-valued distributions and functions of operators
Dokl. Akad. Nauk SSSR, 231:6 (1976), 1304–1307
-
On the uniqueness of analytic continuation with respect to a parameter and the vanishing of cohomology with values in the sheaf of germs of holomorphic functions
Dokl. Akad. Nauk SSSR, 231:3 (1976), 551–554
-
On upper and lower values of a generalized function at a point
Mat. Zametki, 14:3 (1973), 339–348
© , 2025