RUS  ENG
Full version
PEOPLE

Shamarov Nikolaj Nikolaevich

Publications in Math-Net.Ru

  1. Explicit Bargmann-type isomorphism between Berezin and Smolyanov representations of bosonic Fock spaces

    TMF, 223:1 (2025),  159–165
  2. Schrödinger quantization of infinite-dimensional Hamiltonian systems with a nonquadratic Hamiltonian function

    Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020),  65–69
  3. Differential forms on locally convex spaces and the Stokes formula

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 8,  84–97
  4. Functional Laplace operator on a $\mathfrak p$-adic space and Feynman–Kac and Feynman formulas

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(23) (2011),  251–259
  5. Feynman Formulas and Path Integrals for Evolution Equations with the Vladimirov Operator

    Trudy Mat. Inst. Steklova, 265 (2009),  229–240
  6. Representation of solutions to a heat conduction equation with Vladimirov’s operator by functional integrals

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, no. 4,  16–22
  7. Applications of Nonstandard Number Systems in Mathematical Physics

    CMFD, 23 (2007),  182–194
  8. The Maslov–Poisson measure and Feynman formulas for the solution of the Dirac equation

    Fundam. Prikl. Mat., 12:6 (2006),  193–211
  9. Polynomial changes of anti-commuting variables in functional super-analysis

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2006, no. 4,  3–8
  10. Fourier Transforms of Distributions of Homogeneous Random Fields with Independent Increments and Complex Markov–Maslov Chains

    Mat. Zametki, 75:2 (2004),  311–316
  11. De Rham–Hodge–Kodaira decomposition on an infinite-dimensional space with a smooth product-measure

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 4,  14–18
  12. A probabilistic solution of the Neumann problem for the Poisson equation in a domain of a Hilbert space

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 4,  102–106
  13. Some formulas for calculation of differential forms of finite copower on locally convex space

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 2,  26–33


© Steklov Math. Inst. of RAS, 2025