RUS  ENG
Full version
PEOPLE

Pechentsov Alexander Sergeevich

Publications in Math-Net.Ru

  1. Regularized traces of singular differential operators with canonical boundary conditions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2011, no. 4,  11–17
  2. The spectral function of a singular differential operator of order $2m$

    Izv. RAN. Ser. Mat., 74:6 (2010),  107–126
  3. Regularized Traces of Higher-Order Singular Differential Operators

    Mat. Zametki, 83:1 (2008),  39–49
  4. Asymptotic behavior of the density of the spectral measure of the Sturm–Liouville operator on the half-line with the boundary condition $y(0)=0$

    Differ. Uravn., 42:10 (2006),  1337–1348
  5. Asymptotic Behavior of the Density of the Spectral Measure of the Singular Sturm–Liouville Operator

    Differ. Uravn., 40:4 (2004),  485–499
  6. Asymptotic Behavior of the Spectral Measure of a Singular Sturm–Liouville Operator

    Mat. Zametki, 75:3 (2004),  455–458
  7. Asymptotic behavior of the spectral measure of the operator family $-y''-\varepsilon xy$

    Differ. Uravn., 36:3 (2000),  336–344
  8. Regularized traces of differential operators: the Lidskiǐ–Sadovnichiǐ method

    Differ. Uravn., 35:4 (1999),  490–497
  9. Traces of one class of singular differential operators. The Lidskii–Sadovnichii method

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1999, no. 5,  35–42
  10. Regularized traces of boundary problems in case of multiple roots of characteristic polynomial

    Fundam. Prikl. Mat., 4:2 (1998),  567–583
  11. Asymptotic behavior of spectral functions of the differential operators $-y''-\varepsilon x^2y$

    Mat. Zametki, 63:2 (1998),  302–306
  12. Asymptotic behavior of the spectral function of an operator family

    Mat. Zametki, 61:5 (1997),  793–796
  13. Computer course of mathematical analysis

    Fundam. Prikl. Mat., 2:2 (1996),  595–609
  14. On the asymptotics of the spectral function of selfadjoint pseudodifferential operators

    Differ. Uravn., 29:5 (1993),  852–858
  15. Regularized traces of higher-order elliptic operators

    Differ. Uravn., 29:1 (1993),  50–53
  16. Traces of higher-order singular differential operators

    Dokl. Akad. Nauk SSSR, 312:6 (1990),  1321–1324
  17. Basic properties of the system of eigenfunctions of a boundary value problem with a multiple root of the characteristic polynomial

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1989, no. 4,  17–22
  18. Basis properties of eigenfunctions of a boundary value problem in the case of a multiple root of the characteristic polynomial

    Differ. Uravn., 24:4 (1988),  703–705
  19. Boundary value problems for differential equations, which contain a parameter, with multiple roots of the characteristic equation

    Differ. Uravn., 20:2 (1984),  263–273
  20. Asymptotic expansion of solutions of linear differential equations containing a parameter

    Differ. Uravn., 17:9 (1981),  1611–1620


© Steklov Math. Inst. of RAS, 2024