RUS  ENG
Full version
PEOPLE

Uchaikin Vladimir Vasilyevich

Publications in Math-Net.Ru

  1. Spontaneous clustering in Markov chains. IV. Clustering in turbulent environments

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 228 (2023),  58–84
  2. Spontaneous clustering in Markov chains. III. Monte Carlo Algorithms

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 222 (2023),  115–133
  3. Spontaneous clustering in Markov chains. II. Mesofractal model

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 221 (2023),  128–147
  4. Spontaneous clustering in Markov chains. I. Fractal Dust

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 220 (2023),  125–144
  5. Nonlocal (fractional-differential) model of cosmic ray transport in the interstellar medium

    UFN, 193:3 (2023),  233–278
  6. On an algorithm for simulation of multiparticles events

    Chelyab. Fiz.-Mat. Zh., 7:4 (2022),  466–479
  7. Method of variational interpolation in inverse problems of anomalous diffusion of fractional-differential type

    Sib. Zh. Vychisl. Mat., 24:4 (2021),  393–408
  8. Atoms and photons: kinetic equations with delay

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 167 (2019),  62–96
  9. Fractional models in hydromechanics

    Izvestiya VUZ. Applied Nonlinear Dynamics, 27:1 (2019),  5–40
  10. Variational interpolation of functionals in transport theory inverse problems

    Sib. Zh. Vychisl. Mat., 22:3 (2019),  363–380
  11. Adjoint equation method for solving the inverse diffusion source problem

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 11:3 (2019),  20–27
  12. Nonlocal Turbulent Diffusion Models

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 154 (2018),  113–122
  13. Nonlinear perturbation theory based on the variational principle: Model examples

    Izvestiya VUZ. Applied Nonlinear Dynamics, 26:6 (2018),  82–98
  14. Memory and nonlinear transport effects in charging–discharging of a supercapacitor

    Zhurnal Tekhnicheskoi Fiziki, 86:2 (2016),  95–104
  15. Experimental study of charging-discharging currents in supercapacitors

    University proceedings. Volga region. Physical and mathematical sciences, 2014, no. 4,  164–175
  16. Statistical Analysis of Radiation-Induced Dynamics of Cancer Cell Transcriptome Using Dna-Microarray Data

    Mat. Biolog. Bioinform., 8:2 (2013),  520–528
  17. Fractional phenomenology of cosmic ray anomalous diffusion

    UFN, 183:11 (2013),  1175–1223
  18. Fractional models of cosmic ray acceleration in the Galaxy

    Pis'ma v Zh. Èksper. Teoret. Fiz., 92:4 (2010),  226–232
  19. On the fractional derivative model of the transport of cosmic rays in the Galaxy

    Pis'ma v Zh. Èksper. Teoret. Fiz., 91:3 (2010),  115–120
  20. Fractional differential approach to dispersive transport in semiconductors

    UFN, 179:10 (2009),  1079–1104
  21. Fractional differential kinetics of dispersive transport as the consequence of its self-similarity

    Pis'ma v Zh. Èksper. Teoret. Fiz., 86:8 (2007),  584–588
  22. An algorithm of statistical estimation of the parameters of fractionally stable distributions

    Sistemy i Sredstva Inform., 2006, no. special issue,  226–237
  23. Stochastic solution to partial differential equations of fractional orders

    Sib. Zh. Vychisl. Mat., 6:2 (2003),  197–203
  24. Self-similar anomalous diffusion and Levy-stable laws

    UFN, 173:8 (2003),  847–876
  25. Numerical solution to the non-stationary problem of anomalous kinetic by the method of momenta

    Zh. Vychisl. Mat. Mat. Fiz., 43:10 (2003),  1536–1548
  26. Anomalous diffusion of particles with a finite free-motion velocity

    TMF, 115:1 (1998),  154–160
  27. Monte Carlo simulation of particle transport with multiplication

    Zh. Vychisl. Mat. Mat. Fiz., 16:3 (1976),  758–766


© Steklov Math. Inst. of RAS, 2024