RUS  ENG
Full version
PEOPLE

Monakhov Victor Stepanovich

Publications in Math-Net.Ru

  1. A Finite Group with a Maximal Miller–Moreno Subgroup

    Mat. Zametki, 115:6 (2024),  940–943
  2. Finite groups with formational subnormal primary subgroups of bounded exponent

    Sib. Èlektron. Mat. Izv., 20:2 (2023),  785–796
  3. Finite groups with weakly subnormal Schmidt subgroups

    Tr. Inst. Mat., 31:1 (2023),  50–57
  4. On Submodularity and K$\mathfrak F$-Subnormality in Finite Groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:4 (2023),  169–180
  5. On a Finite Group Generated by Subnormal Supersoluble Subgroups

    Mat. Zametki, 111:6 (2022),  953–954
  6. Finite Factorizable Groups with $\mathbb P$-Subnormal $\mathrm v$-Supersolvable and $\mathrm{sh}$-Supersolvable Factors

    Mat. Zametki, 111:3 (2022),  403–410
  7. On supersolvability of a finite group with $Z$-supplements to the normalizers of Sylow subgroups

    PFMT, 2022, no. 1(50),  74–77
  8. Three Formations over $\mathfrak U$

    Mat. Zametki, 110:3 (2021),  358–367
  9. On strictly $2$-maximal subgroups of finite groups

    PFMT, 2021, no. 4(49),  95–100
  10. Finite groups with semi-subnormal Schmidt subgroups

    Algebra Discrete Math., 29:1 (2020),  66–73
  11. Remarks on the Supersolvability of a Group with Prime Indices of Some Subgroups

    Mat. Zametki, 107:2 (2020),  246–255
  12. Finite groups with some subnormal 2-maximal subgroups

    PFMT, 2020, no. 2(43),  75–79
  13. On supersolubility of a group with seminormal subgroups

    Sibirsk. Mat. Zh., 61:1 (2020),  148–159
  14. Groups with Formation Subnormal $2$-Maximal Subgroups

    Mat. Zametki, 105:2 (2019),  269–277
  15. Finite groups with restrictions on two maximal subgroups

    PFMT, 2019, no. 3(40),  88–92
  16. On the solvability of a finite group with a pair of non-conjugate subgroups of primary indices II

    PFMT, 2019, no. 1(38),  61–64
  17. Finite groups with supersoluble subgroups of given orders

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019),  155–163
  18. On finite groups with Hall normally embedded Schmidt subgroups

    Algebra Discrete Math., 26:1 (2018),  90–96
  19. On the solvability of a finite group with a pair of non-conjugate subgroups of primary indices

    PFMT, 2018, no. 2(35),  57–59
  20. On the supersoluble residual of mutually permutable products

    PFMT, 2018, no. 1(34),  69–70
  21. Supersolubility of a finite group with normally embedded maximal subgroups in Sylow subgroups

    Sibirsk. Mat. Zh., 59:5 (2018),  1159–1170
  22. On composition factors of a finite group with $OS$-seminormal Sylow subgroup

    Tr. Inst. Mat., 26:1 (2018),  88–94
  23. On the permutability of a Sylow subgroup with Schmidt subgroups from a supplement

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018),  145–154
  24. Nicolai N. Semko (dedicated to 60-th Birthday)

    Algebra Discrete Math., 24:1 (2017),  C–F
  25. The nilpotency criterion for the derived subgroup of a finite group

    PFMT, 2017, no. 3(32),  58–60
  26. Finite groups with formation subnormal primary subgroups

    Sibirsk. Mat. Zh., 58:4 (2017),  851–863
  27. On the supersoluble residual of a product of subnormal supersoluble subgroups

    Sibirsk. Mat. Zh., 58:2 (2017),  353–364
  28. A metanilpotency criterion for a finite solvable group

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:4 (2017),  253–256
  29. Finite factorised groups whose factors are subnormal supersolvable subgroups

    PFMT, 2016, no. 3(28),  40–46
  30. Finite groups with abnormal and $\mathfrak U$-subnormal subgroups

    Sibirsk. Mat. Zh., 57:2 (2016),  447–462
  31. On $p$-supersoluble residual of a product of normal $p$-supersoluble subgroups

    Tr. Inst. Mat., 23:2 (2015),  88–96
  32. On the $p$-supersolvability of a finite factorizable group with normal factors

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  256–267
  33. Supersolvability of Finite Factorizable Groups with Cyclic Sylow Subgroups in the Factors

    Mat. Zametki, 96:6 (2014),  911–920
  34. On finite groups with given maximal subgroups

    Sibirsk. Mat. Zh., 55:3 (2014),  553–561
  35. On derived $\pi$-length of a finite $\pi$-solvable group with supersolvable $\pi$-Hall subgroup

    Algebra Discrete Math., 16:2 (2013),  233–241
  36. Finite groups with nilpotent and Hall subgroups

    Diskr. Mat., 25:1 (2013),  137–143
  37. On the Solvability of a Group with Commuting Subgroups

    Mat. Zametki, 93:3 (2013),  436–441
  38. On Sylow tower of finite group with subnormal non-cyclic primary subgroups

    PFMT, 2013, no. 4(17),  68–71
  39. On finite $\pi$-solvable groups with bicyclic Sylow subgroups

    PFMT, 2013, no. 1(14),  61–66
  40. Finite factorizable groups with solvable $\mathbb P^2$-subnormal subgroups

    Sibirsk. Mat. Zh., 54:1 (2013),  77–85
  41. On the derived $\pi$-length of a finite $\pi$-solvable group with a given $\pi$-Hall subgroup

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013),  215–223
  42. Invariants of finite solvable groups

    Algebra Discrete Math., 14:1 (2012),  107–131
  43. On maximal subgroup of a finite solvable group

    Eurasian Math. J., 3:2 (2012),  129–134
  44. The solvability criteria for finite groups with restrictions on cofactors of maximal sugroups

    PFMT, 2012, no. 2(11),  88–94
  45. On the solvability of some finite primitive groups

    PFMT, 2012, no. 1(10),  87–91
  46. On solvable groups whose Sylow subgroups are either abelian or extraspecial

    Tr. Inst. Mat., 20:2 (2012),  3–9
  47. On the permutability of $n$-maximal subgroups with Schmidt subgroups

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:3 (2012),  125–130
  48. Subgroups of a Finite Group Commuting with Biprimary Subgroups

    Mat. Zametki, 89:4 (2011),  524–529
  49. On finite soluble groups of fixed rank

    Sibirsk. Mat. Zh., 52:5 (2011),  1123–1137
  50. On the $\pi'$-properties of a finite group possessing a Hall $\pi$-subgroup

    Sibirsk. Mat. Zh., 52:2 (2011),  297–309
  51. On the solvability of finite groups with given cofactors of the maximal subgroups

    Tr. Inst. Mat., 19:2 (2011),  60–68
  52. Finite groups with decomposable cofactors of maximal subgroups

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011),  181–188
  53. On the permutability of maximal subgroups with Schmidt subgroups

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011),  126–133
  54. Invariants of finite solvable groups

    PFMT, 2010, no. 1(2),  63–81
  55. On permutability of Sylow subgroups with Schmidt subgroups

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  130–139
  56. Finite solvable groups in which the Sylow $p$-subgroups are either bicyclic or of order $p^3$

    Fundam. Prikl. Mat., 15:2 (2009),  121–131
  57. Solvability of any Group with Hall Supplements to Normalizers of Sylow Subgroups

    Mat. Zametki, 85:2 (2009),  227–233
  58. On the $p$-supersolubility of a finite group with a $\mu$-supplemented Sylow $p$-subgroup

    Sibirsk. Mat. Zh., 50:4 (2009),  858–864
  59. The nilpotent $\pi$-length of maximum subgroups in finite $\pi$-soluble groups

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2009, no. 6,  3–8
  60. Finite $\pi$-Solvable Groups Whose Maximal Subgroups Have the Hall Property

    Mat. Zametki, 84:3 (2008),  390–394
  61. Towards Huppert–Shemetkov's theorem

    Tr. Inst. Mat., 16:1 (2008),  64–66
  62. Finite groups with seminormal Schmidt subgroups

    Algebra Logika, 46:4 (2007),  448–458
  63. On finite groups with some subgroups of prime indices

    Sibirsk. Mat. Zh., 48:4 (2007),  833–836
  64. Finite groups with Hall supplements to primitive subgroups

    Sibirsk. Mat. Zh., 48:2 (2007),  359–368
  65. Finite groups with a seminormal Hall subgroup

    Mat. Zametki, 80:4 (2006),  573–581
  66. Indices of Maximal Subgroups of Finite Soluble Groups

    Algebra Logika, 43:4 (2004),  411–424
  67. An Analog for the Frattini Factorization of Finite Groups

    Algebra Logika, 43:2 (2004),  184–196
  68. Finite groups with subnormal Schmidt subgroups

    Sibirsk. Mat. Zh., 45:6 (2004),  1316–1322
  69. On the $p$-length of a product of two Schmidt groups

    Sibirsk. Mat. Zh., 45:2 (2004),  329–333
  70. On the nilpotent $\pi$-length of a finite $\pi$-solvable group

    Diskr. Mat., 13:3 (2001),  145–152
  71. Maximal and Sylow Subgroups of Solvable Finite Groups

    Mat. Zametki, 70:4 (2001),  603–612
  72. On classes of finite groups with fixed Schmidt subgroups

    Trudy Inst. Mat. i Mekh. UrO RAN, 7:2 (2001),  208–214
  73. Normal subgroups of finite groups, and formations with normalizer conditions

    Mat. Zametki, 66:6 (1999),  867–870
  74. Finite groups with 2-nilpotent subgroups of even index

    Mat. Zametki, 61:5 (1997),  700–705
  75. Finite groups with a given set of Schmidt subgroups

    Mat. Zametki, 58:5 (1995),  717–722
  76. Solvability of normal subgroups of finite groups

    Mat. Zametki, 51:3 (1992),  85–90
  77. Solvability of a factorizable group with decomposable factors

    Mat. Zametki, 34:3 (1983),  337–340
  78. Orders of Sylow subgroups of the general linear group

    Algebra Logika, 17:1 (1978),  79–85
  79. Product of a biprimary and a 2-decomposable group

    Mat. Zametki, 23:5 (1978),  641–649
  80. The product of two groups with nilpotent subgroups of index not greater than 2

    Algebra Logika, 16:1 (1977),  46–62
  81. Normal subgroups of biprimary groups

    Mat. Zametki, 18:6 (1975),  877–886
  82. The product of two groups, one of which contains a cyclic subgroup of index $\le2$

    Mat. Zametki, 16:2 (1974),  285–295
  83. Influence of properties of maximal subgroups on the structure of a finite group

    Mat. Zametki, 11:2 (1972),  183–190

  84. Fedir Mykolayovych Lyman (22.02.1941 – 13.06.2020)

    Algebra Discrete Math., 30:1 (2020),  C–E
  85. Igor Ya. Subbotin (dedicated to 70th Birthday)

    Algebra Discrete Math., 29:2 (2020),  C–F
  86. Leonid A. Kurdachenko (dedicated to 70th Birthday)

    Algebra Discrete Math., 29:1 (2020),  C–H
  87. Volodymyr Kyrychenko (to the 75th anniversary)

    Algebra Discrete Math., 27:1 (2019),  C–E
  88. Leonid Shemetkov. His entire life devotion

    Algebra Discrete Math., 15:2 (2013),  155–160
  89. Leonid Aleksandrovich Shemetkov (3.07.1937–24.03.2013)

    Algebra Discrete Math., 15:2 (2013),  C–D
  90. Научная школа профессора Л.А. Шеметкова

    PFMT, 2012, no. 2(11),  112–113
  91. Tenth All-Union Symposium on Group Theory

    Uspekhi Mat. Nauk, 42:6(258) (1987),  211–214


© Steklov Math. Inst. of RAS, 2024