RUS  ENG
Full version
PEOPLE

Krotov Veniamin Grigoryevich

Publications in Math-Net.Ru

  1. Marcinkiewicz's interpolation theorem for Hardy-type spaces and its applications

    Mat. Sb., 215:8 (2024),  95–119
  2. Marcinkiewicz Interpolation Theorem for Spaces of Hardy Type

    Mat. Zametki, 113:2 (2023),  311–315
  3. Interpolation of Operators in Hardy-Type Spaces

    Trudy Mat. Inst. Steklova, 323 (2023),  181–195
  4. The Fatou Property for General Approximate Identities on Metric Measure Spaces

    Mat. Zametki, 110:2 (2021),  204–220
  5. On the Continuity of Best Approximations by Constants on Balls in Metric Measure Spaces

    Mat. Zametki, 107:2 (2020),  221–228
  6. Estimates of $L^p$-Oscillations of Functions for $p>0$

    Mat. Zametki, 97:3 (2015),  407–420
  7. Functions from Sobolev and Besov spaces with maximal Hausdorff dimension of the exceptional Lebesgue set

    Fundam. Prikl. Mat., 18:5 (2013),  145–153
  8. Luzin's Correction Theorem and the Coefficients of Fourier Expansions in the Faber–Schauder System

    Mat. Zametki, 93:2 (2013),  172–178
  9. Criteria for compactness in $L^p$-spaces, $p\geqslant0$

    Mat. Sb., 203:7 (2012),  129–148
  10. A generalization of Campanato–Meyers' theorem

    Tr. Inst. Mat., 20:2 (2012),  30–35
  11. The Rate of Convergence of Steklov Means on Metric Measure Spaces and Hausdorff Dimension

    Mat. Zametki, 89:1 (2011),  145–148
  12. Compactness of Embeddings of Sobolev Type on Metric Measure Spaces

    Mat. Zametki, 86:6 (2009),  829–844
  13. The Luzin approximation of functions from the classes $W^p_\alpha$ on metric spaces with measure

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5,  55–66
  14. Weighted estimates for tangential boundary behaviour

    Mat. Sb., 197:2 (2006),  57–74
  15. Generalized Poincaré–Sobolev inequality on metric spaces

    Tr. Inst. Mat., 14:1 (2006),  51–61
  16. Strong-Type Inequality for Convolution with Square Root of the Poisson Kernel

    Mat. Zametki, 75:4 (2004),  580–591
  17. When is an Orthogonal Series a Fourier Series?

    Mat. Zametki, 74:1 (2003),  139–142
  18. Tangential boundary behavior of functions of several variables

    Mat. Zametki, 68:2 (2000),  230–248
  19. An exact estimate of the boundary behavior of functions from Hardy–Sobolev classes in the critical case

    Mat. Zametki, 62:4 (1997),  527–539
  20. A sharp estimate for the boundary behavior of functions in the Hardy–Sobolev classes $H^p_\alpha(B^n)$ in the critical case $\alpha p=n$

    Dokl. Akad. Nauk SSSR, 319:1 (1991),  42–45
  21. On the smoothness of universal Marcinkiewicz functions and universal trigonometric series

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 8,  26–31
  22. On the boundary behavior of functions in spaces of Hardy type

    Izv. Akad. Nauk SSSR Ser. Mat., 54:5 (1990),  957–974
  23. Differential properties on the boundary of functions that are holomorphic in the unit ball in $C^N$

    Mat. Zametki, 45:2 (1989),  51–59
  24. Estimates of maximal operators connected with the boundary behaviour and their applications

    Trudy Mat. Inst. Steklov., 190 (1989),  117–138
  25. Boundary behavior of fractional integrals of holomorphic functions in the unit ball in $C^N$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 4,  73–75
  26. On the smoothness of Luzin primitives and on theorems of Men'shov and Bari

    Mat. Sb. (N.S.), 134(176):3(11) (1987),  404–420
  27. On differentiability properties of functions in $H^p$ on the boundary of the disk of convergence

    Trudy Mat. Inst. Steklov., 180 (1987),  141–142
  28. Unconditional basicity of the Haar system in the spaces $\Lambda_\omega^1$

    Mat. Zametki, 32:5 (1982),  675–684
  29. On differentiability of functions in $L^p$, $0<p<1$

    Mat. Sb. (N.S.), 117(159):1 (1982),  95–113
  30. On differentiability of functions in $L^p$ and $H^p$ for $0<p<1$

    Dokl. Akad. Nauk SSSR, 256:6 (1981),  1311–1314
  31. Unconditional convergence of Fourier series with respect to the Haar system in the spaces $\Lambda_\omega^p$

    Mat. Zametki, 23:5 (1978),  685–695
  32. Representation of measurable functions by series in the Faber–Schauder system, and universal series

    Izv. Akad. Nauk SSSR Ser. Mat., 41:1 (1977),  215–229
  33. Direct and inverse theorems of Jackson type in $L^p$ spaces ($0<p<1$)

    Dokl. Akad. Nauk SSSR, 226:1 (1976),  44–47
  34. Fourier coefficients with respect to a certain orthonormal system that forms a basis in the space of continuous functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 10,  33–46
  35. Direct and converse theorems of Jackson type in $L^p$ spaces, $0<p<1$

    Mat. Sb. (N.S.), 98(140):3(11) (1975),  395–415
  36. Correction to the paper “Haar series”

    Sibirsk. Mat. Zh., 16:2 (1975),  417–418
  37. Representation of measurable functions by series in the Faber–Schauder system and universal series

    Dokl. Akad. Nauk SSSR, 214:6 (1974),  1258–1261
  38. Continuous functions with monotonically increasing Fourier coefficients in the Haar system

    Sibirsk. Mat. Zh., 15:2 (1974),  439–444
  39. On series with respect to the Faber–Schauder system and with respect to the bases of the space $C[0,1]$

    Mat. Zametki, 14:2 (1973),  185–195
  40. Series in the Haar system

    Sibirsk. Mat. Zh., 14:1 (1973),  111–127


© Steklov Math. Inst. of RAS, 2024