|
|
Publications in Math-Net.Ru
-
Marcinkiewicz's interpolation theorem for Hardy-type spaces and its applications
Mat. Sb., 215:8 (2024), 95–119
-
Marcinkiewicz Interpolation Theorem for Spaces of Hardy Type
Mat. Zametki, 113:2 (2023), 311–315
-
Interpolation of Operators in Hardy-Type Spaces
Trudy Mat. Inst. Steklova, 323 (2023), 181–195
-
The Fatou Property for General Approximate Identities on Metric Measure Spaces
Mat. Zametki, 110:2 (2021), 204–220
-
On the Continuity of Best Approximations by Constants on Balls in Metric Measure Spaces
Mat. Zametki, 107:2 (2020), 221–228
-
Estimates of $L^p$-Oscillations of Functions for $p>0$
Mat. Zametki, 97:3 (2015), 407–420
-
Functions from Sobolev and Besov spaces with maximal Hausdorff dimension of the exceptional Lebesgue set
Fundam. Prikl. Mat., 18:5 (2013), 145–153
-
Luzin's Correction Theorem and the Coefficients of Fourier Expansions in the Faber–Schauder System
Mat. Zametki, 93:2 (2013), 172–178
-
Criteria for compactness in $L^p$-spaces, $p\geqslant0$
Mat. Sb., 203:7 (2012), 129–148
-
A generalization of Campanato–Meyers' theorem
Tr. Inst. Mat., 20:2 (2012), 30–35
-
The Rate of Convergence of Steklov Means on Metric Measure Spaces and Hausdorff Dimension
Mat. Zametki, 89:1 (2011), 145–148
-
Compactness of Embeddings of Sobolev Type on Metric Measure Spaces
Mat. Zametki, 86:6 (2009), 829–844
-
The Luzin approximation of functions from the classes $W^p_\alpha$ on metric spaces with measure
Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5, 55–66
-
Weighted estimates for tangential boundary behaviour
Mat. Sb., 197:2 (2006), 57–74
-
Generalized Poincaré–Sobolev inequality on metric spaces
Tr. Inst. Mat., 14:1 (2006), 51–61
-
Strong-Type Inequality for Convolution with Square Root of the Poisson Kernel
Mat. Zametki, 75:4 (2004), 580–591
-
When is an Orthogonal Series a Fourier Series?
Mat. Zametki, 74:1 (2003), 139–142
-
Tangential boundary behavior of functions of several variables
Mat. Zametki, 68:2 (2000), 230–248
-
An exact estimate of the boundary behavior of functions from Hardy–Sobolev classes in the critical case
Mat. Zametki, 62:4 (1997), 527–539
-
A sharp estimate for the boundary behavior of functions in the Hardy–Sobolev classes $H^p_\alpha(B^n)$ in the critical case $\alpha p=n$
Dokl. Akad. Nauk SSSR, 319:1 (1991), 42–45
-
On the smoothness of universal Marcinkiewicz functions and universal trigonometric series
Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 8, 26–31
-
On the boundary behavior of functions in spaces of Hardy type
Izv. Akad. Nauk SSSR Ser. Mat., 54:5 (1990), 957–974
-
Differential properties on the boundary of functions that are holomorphic in the unit ball in $C^N$
Mat. Zametki, 45:2 (1989), 51–59
-
Estimates of maximal operators connected with the boundary behaviour and their applications
Trudy Mat. Inst. Steklov., 190 (1989), 117–138
-
Boundary behavior of fractional integrals of holomorphic functions in the unit ball in $C^N$
Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 4, 73–75
-
On the smoothness of Luzin primitives and on theorems of Men'shov
and Bari
Mat. Sb. (N.S.), 134(176):3(11) (1987), 404–420
-
On differentiability properties of functions in $H^p$ on the boundary of the disk of convergence
Trudy Mat. Inst. Steklov., 180 (1987), 141–142
-
Unconditional basicity of the Haar system in the spaces $\Lambda_\omega^1$
Mat. Zametki, 32:5 (1982), 675–684
-
On differentiability of functions in $L^p$, $0<p<1$
Mat. Sb. (N.S.), 117(159):1 (1982), 95–113
-
On differentiability of functions in $L^p$ and $H^p$ for $0<p<1$
Dokl. Akad. Nauk SSSR, 256:6 (1981), 1311–1314
-
Unconditional convergence of Fourier series with respect to the Haar system in the spaces $\Lambda_\omega^p$
Mat. Zametki, 23:5 (1978), 685–695
-
Representation of measurable functions by series in the Faber–Schauder system, and universal series
Izv. Akad. Nauk SSSR Ser. Mat., 41:1 (1977), 215–229
-
Direct and inverse theorems of Jackson type in $L^p$ spaces ($0<p<1$)
Dokl. Akad. Nauk SSSR, 226:1 (1976), 44–47
-
Fourier coefficients with respect to a certain orthonormal system that forms a basis in the space of continuous functions
Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 10, 33–46
-
Direct and converse theorems of Jackson type in $L^p$ spaces, $0<p<1$
Mat. Sb. (N.S.), 98(140):3(11) (1975), 395–415
-
Correction to the paper “Haar series”
Sibirsk. Mat. Zh., 16:2 (1975), 417–418
-
Representation of measurable functions by series in the Faber–Schauder system and universal series
Dokl. Akad. Nauk SSSR, 214:6 (1974), 1258–1261
-
Continuous functions with monotonically increasing Fourier coefficients in the Haar system
Sibirsk. Mat. Zh., 15:2 (1974), 439–444
-
On series with respect to the Faber–Schauder system and with respect to the bases of the space $C[0,1]$
Mat. Zametki, 14:2 (1973), 185–195
-
Series in the Haar system
Sibirsk. Mat. Zh., 14:1 (1973), 111–127
© , 2024