RUS  ENG
Full version
PEOPLE

Matiyasevich Yuri Vladimirovich

Publications in Math-Net.Ru

  1. Asymptotic structure of eigenvalues and eigenvectors of certain triangular Hankel matrices

    Chebyshevskii Sb., 21:1 (2020),  259–272
  2. The Riemann hypothesis as the parity of special binomial coefficients

    Chebyshevskii Sb., 19:3 (2018),  46–60
  3. A few factors from the Euler product are sufficient for calculating the zeta function with high precision

    Trudy Mat. Inst. Steklova, 299 (2017),  192–202
  4. Riemann’s hypothesis in terms of the eigenvalues of special Hankel matrices

    Sovrem. Probl. Mat., 23 (2016),  87–101
  5. Calculation of Belyǐ functions for trees with weighted edges

    Zap. Nauchn. Sem. POMI, 446 (2016),  122–138
  6. Riemann's zeta function and finite Dirichlet series

    Algebra i Analiz, 27:6 (2015),  174–198
  7. Yet Another Representation for Reciprocals of the Nontrivial Zeros of the Riemann Zeta Function

    Mat. Zametki, 97:3 (2015),  471–474
  8. What can and cannot be done with Diophantine problems

    Trudy Mat. Inst. Steklova, 275 (2011),  128–143
  9. Alternatives to the Euler–Maclaurin Formula for Calculating Infinite Sums

    Mat. Zametki, 88:4 (2010),  543–548
  10. Towards finite-fold Diophantine representations

    Zap. Nauchn. Sem. POMI, 377 (2010),  78–90
  11. A Diophantine Representation of Bernoulli Numbers and Its Applications

    Trudy Mat. Inst. Steklova, 242 (2003),  98–102
  12. One Probabilistic equivalent of the four color conjecture

    Teor. Veroyatnost. i Primenen., 48:2 (2003),  411–416
  13. Some algebraic methods for calculation of the number of colorings of a graph

    Zap. Nauchn. Sem. POMI, 283 (2001),  193–205
  14. Computation of generalized Chebyshev polynomials on a computer

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 6,  59–61
  15. A new technique for obtaining Diophantine representations via elimination of bounded universal quantifiers

    Zap. Nauchn. Sem. POMI, 220 (1995),  83–92
  16. Standardization of microcomputer software using virtual-machine design

    Avtomat. i Telemekh., 1990, no. 5,  168–175
  17. A relationship between certain sums over trivial and nontrivial zeros of the Riemann zeta-function

    Mat. Zametki, 45:2 (1989),  65–70
  18. Diophantine complexity

    Zap. Nauchn. Sem. LOMI, 174 (1988),  122–131
  19. Studies in certain algorithmic problems of algebra and number theory

    Trudy Mat. Inst. Steklov., 168 (1984),  218–235
  20. An analytic representation for the sum of values inverse to nontrivial zeros of the Riemann zeta function

    Trudy Mat. Inst. Steklov., 163 (1984),  181–182
  21. Primes are nonnegative values of a polynomial in 10 variables

    Zap. Nauchn. Sem. LOMI, 68 (1977),  62–82
  22. A class of primality criteria formulated in terms of the divisibility of binomial coefficients

    Zap. Nauchn. Sem. LOMI, 67 (1977),  167–183
  23. A new proof of the theorem on exponential diophantine representation of enumerable sets

    Zap. Nauchn. Sem. LOMI, 60 (1976),  75–92
  24. On metamathematical approach to proving theorems of discrete mathematics

    Zap. Nauchn. Sem. LOMI, 49 (1975),  31–50
  25. A proof scheme in discrete mathematics

    Zap. Nauchn. Sem. LOMI, 40 (1974),  94–100
  26. The existence of non-effectivizable estimates in the theory of exponential Diophantine equations

    Zap. Nauchn. Sem. LOMI, 40 (1974),  77–93
  27. The application of the methods of the theory of logical derivation to graph theory

    Mat. Zametki, 12:6 (1972),  781–790
  28. Diophantine representation of enumerable predicates

    Mat. Zametki, 12:1 (1972),  115–120
  29. Diophantine sets

    Uspekhi Mat. Nauk, 27:5(167) (1972),  185–222
  30. Arithmetical representations of recursively enumerable sets with a small number of quantifiers

    Zap. Nauchn. Sem. LOMI, 32 (1972),  77–84
  31. Diophantine representation of the set of prime numbers

    Dokl. Akad. Nauk SSSR, 196:4 (1971),  770–773
  32. Diophantine representation of enumerable predicates

    Izv. Akad. Nauk SSSR Ser. Mat., 35:1 (1971),  3–30
  33. On real-time recognition of the relation of occurrence

    Zap. Nauchn. Sem. LOMI, 20 (1971),  104–114
  34. A sufficient condition for the recursive convergence of a monotone sequence

    Zap. Nauchn. Sem. LOMI, 20 (1971),  97–103
  35. The Diophantineness of enumerable sets

    Dokl. Akad. Nauk SSSR, 191:2 (1970),  279–282
  36. Arithmetical representations of powers

    Zap. Nauchn. Sem. LOMI, 8 (1968),  159–165
  37. Two reductions of Hilbert's tenth problem

    Zap. Nauchn. Sem. LOMI, 8 (1968),  145–158
  38. A connection between systems of words-and-lengths equations and Hilbert's tenth problem

    Zap. Nauchn. Sem. LOMI, 8 (1968),  132–144
  39. Simple examples of unsolvable associative calculi

    Dokl. Akad. Nauk SSSR, 173:6 (1967),  1264–1266
  40. Simple examples of unsolvable canonical calculi

    Trudy Mat. Inst. Steklov., 93 (1967),  50–88

  41. Gregory Samuilovich Tseytin (obituary)

    Uspekhi Mat. Nauk, 78:3(471) (2023),  170–176
  42. Boris Abramovich Trakhtenbrot (on the centenary of his birth)

    Uspekhi Mat. Nauk, 77:1(463) (2022),  191–195
  43. Десятая проблема Гильберта

    Kvant, 2021, no. 2,  2–8
  44. Viktor Abramovich Zalgaller (obituary)

    Uspekhi Mat. Nauk, 76:5(461) (2021),  195–198
  45. Vasilii Mikhailovich Babich (on his ninetieth birthday)

    Uspekhi Mat. Nauk, 76:1(457) (2021),  201–202
  46. Evgeny Vladimirovich Podsypanin

    Chebyshevskii Sb., 21:4 (2020),  425–426
  47. Yurii Leonidovich Ershov (on his 80th birthday)

    Uspekhi Mat. Nauk, 75:3(453) (2020),  191–194
  48. Vladimir Petrovich Platonov (on his 80th birthday)

    Uspekhi Mat. Nauk, 75:2(452) (2020),  197–200
  49. Vladimir Andreevich Uspensky (27/11/1930–27/6/2018)

    Uspekhi Mat. Nauk, 74:4(448) (2019),  165–180
  50. Валентин Федорович Колчин (1934–2016)

    Diskr. Mat., 28:4 (2016),  3–5
  51. Алан Тьюринг и теория чисел

    Mat. Pros., Ser. 3, 17 (2013),  6–34
  52. Nikolai Aleksandrovich Shanin (obituary)

    Uspekhi Mat. Nauk, 68:4(412) (2013),  173–176
  53. Mikhail Abramovich Taitslin (1936–2013)

    Sib. Èlektron. Mat. Izv., 10 (2013),  54–65
  54. Preface

    Zap. Nauchn. Sem. POMI, 402 (2012),  5–8
  55. Preface

    Zap. Nauchn. Sem. POMI, 377 (2010),  5
  56. Preface

    Zap. Nauchn. Sem. POMI, 304 (2003),  5–6
  57. Nikolai Aleksandrovich Shanin (on his 80th birthday)

    Uspekhi Mat. Nauk, 56:3(339) (2001),  181–184
  58. R. Penrose. “The emperor's new mind”. Oxford University Press, Oxford etc., 1989, xiii+466 pp.

    Algebra i Analiz, 3:5 (1991),  254–265
  59. Nikolai Aleksandrovich Shanin (on his seventieth birthday)

    Uspekhi Mat. Nauk, 45:1(271) (1990),  205–206
  60. Sergei Yur'evich Maslov (obituary)

    Uspekhi Mat. Nauk, 39:2(236) (1984),  129–130
  61. Nikolai Aleksandrovich Shanin (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 35:2(212) (1980),  241–245
  62. Editors' preface

    Zap. Nauchn. Sem. LOMI, 20 (1971),  7


© Steklov Math. Inst. of RAS, 2024