RUS  ENG
Full version
PEOPLE

Voronin Anatolii Fedorovich

Publications in Math-Net.Ru

  1. On conditions for the well-posed solvability of a factorization problem and a class of truncated Wiener—Hopf equations

    Sib. Zh. Ind. Mat., 27:3 (2024),  26–35
  2. Construction of a factorization of a certain class of matrix functions in the Wiener algebra of order two

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 3,  41–51
  3. On the method of factorization of matrix-functions in the Wiener algebra of order 2

    Sib. Zh. Ind. Mat., 25:2 (2022),  32–45
  4. Inhomogeneous vector Riemann boundary value problem and convolutions equation on a finite interval

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 3,  15–28
  5. Some questions on the relationship of the factorization problem of matrix functions and the truncated Wiener—Hopf equation in the Wiener algebra

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  1615–1624
  6. On the relationship between the factorization problem in the Wiener algebra and the truncated Wiener–Hopf equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 12,  22–31
  7. Truncated Wiener-Hopf equation and matrix function factorization

    Sib. Èlektron. Mat. Izv., 17 (2020),  1217–1226
  8. On $\mathbb R$-linear problem and truncated Wiener–Hopf equation

    Mat. Tr., 22:2 (2019),  21–33
  9. A generalized Riemann boundary value problem and integral convolutions equations of the first and second kinds on a finite interval

    Sib. Èlektron. Mat. Izv., 15 (2018),  1651–1662
  10. On the connection between the generalized Riemann boundary value problem and the truncated Wiener–Hopf equation

    Sib. Èlektron. Mat. Izv., 15 (2018),  412–421
  11. The inverse and direct problem for equation of the first kind of convolution on the half-line

    Sib. Èlektron. Mat. Izv., 14 (2017),  1456–1462
  12. Conditions for the stability and uniqueness of the solution of the Markushevich problem

    Sib. Èlektron. Mat. Izv., 14 (2017),  511–517
  13. Reconstruction of the convolution operator from the right-hand side on the real half-axis

    Sib. Zh. Ind. Mat., 17:2 (2014),  32–40
  14. Recovery solutions of the Volterra equation of the first kind of convolution on the half with incomplete data

    Sib. Èlektron. Mat. Izv., 9 (2012),  464–471
  15. Systems of convolution equations of the first and second kind on a finite interval and factorization of matrix-functions

    Sibirsk. Mat. Zh., 53:5 (2012),  978–990
  16. A method for determining the partial indices of symmetric matrix functions

    Sibirsk. Mat. Zh., 52:1 (2011),  54–69
  17. The Riemann boundary value problem in research of well-posednes of linear and nonlinear mathematical physics problems

    Sib. Èlektron. Mat. Izv., 7 (2010),  112–122
  18. Partial indices of unitary and Hermitian matrix functions

    Sibirsk. Mat. Zh., 51:5 (2010),  1010–1016
  19. Исследование интегрального уравнения второго рода в свертках на конечном интервале с периодическим ядром

    Sib. Zh. Ind. Mat., 12:1 (2009),  31–39
  20. The well-posednes of a convolution equations on a finite interval and of a system of Cauchy-type singular integral equations

    Sib. Èlektron. Mat. Izv., 5 (2008),  456–464
  21. Интегральное уравнения первого рода в свертках на конечном интервале с периодическим ядром

    Sib. Zh. Ind. Mat., 11:1 (2008),  46–56
  22. Necessary and sufficient well-posedness conditions for a convolution equation of the second kind with even kernel on a finite interval

    Sibirsk. Mat. Zh., 49:4 (2008),  756–767
  23. A complete generalization of the Wiener–Hopf method to convolution integral equations with integrable kernel on a finite interval

    Differ. Uravn., 40:9 (2004),  1190–1197
  24. The Titchmarsh Theorem on Supports of Convolutions Generalized to Multidimensional Systems of Volterra Convolution Equations of the First Kind

    Differ. Uravn., 39:3 (2003),  416–417
  25. Volterra convolution equation of first kind on segment

    Fundam. Prikl. Mat., 8:4 (2002),  955–966
  26. An analogue of Picard's theorem for a convolution equation of the first kind with a smooth kernel

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 7,  3–7
  27. On the well-posedness of a boundary value problem on a line for three analytic functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 4,  18–23
  28. A Uniqueness Theorem for a Convolution Integral Equation of the First Kind with Differentiable Kernel on an Interval

    Differ. Uravn., 37:10 (2001),  1342–1349
  29. A System of Volterra Convolution Equations of the First Kind on a Finite Interval

    Differ. Uravn., 37:9 (2001),  1258–1264
  30. The Riemann boundary value problem for a half-plane with a coefficient that exponentially decreases at infinity

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 9,  20–23
  31. A class of second-order convolution equations on an interval

    Differ. Uravn., 36:10 (2000),  1377–1384
  32. Convolution equations on the half-line with symbols degenerating on an interval

    Differ. Uravn., 36:4 (2000),  555–557
  33. The Monte Carlo method with additional random sampling for calculating the flow of particles “at a point”

    Zh. Vychisl. Mat. Mat. Fiz., 25:8 (1985),  1155–1163


© Steklov Math. Inst. of RAS, 2025