|
|
Publications in Math-Net.Ru
-
On conditions for the well-posed solvability of a factorization problem and a class of truncated Wiener—Hopf equations
Sib. Zh. Ind. Mat., 27:3 (2024), 26–35
-
Construction of a factorization of a certain class of matrix functions in the Wiener algebra of order two
Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 3, 41–51
-
On the method of factorization of matrix-functions in the Wiener algebra of order 2
Sib. Zh. Ind. Mat., 25:2 (2022), 32–45
-
Inhomogeneous vector Riemann boundary value problem and convolutions equation on a finite interval
Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 3, 15–28
-
Some questions on the relationship of the factorization problem of matrix functions and the truncated Wiener—Hopf equation in the Wiener algebra
Sib. Èlektron. Mat. Izv., 18:2 (2021), 1615–1624
-
On the relationship between the factorization problem in the Wiener algebra and the truncated Wiener–Hopf equation
Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 12, 22–31
-
Truncated Wiener-Hopf equation and matrix function factorization
Sib. Èlektron. Mat. Izv., 17 (2020), 1217–1226
-
On $\mathbb R$-linear problem and truncated Wiener–Hopf equation
Mat. Tr., 22:2 (2019), 21–33
-
A generalized Riemann boundary value problem and integral
convolutions equations of the first and second kinds on a finite
interval
Sib. Èlektron. Mat. Izv., 15 (2018), 1651–1662
-
On the connection between the generalized Riemann boundary value problem and the truncated Wiener–Hopf equation
Sib. Èlektron. Mat. Izv., 15 (2018), 412–421
-
The inverse and direct problem for equation of the first kind of convolution on the half-line
Sib. Èlektron. Mat. Izv., 14 (2017), 1456–1462
-
Conditions for the stability and uniqueness of the solution of the Markushevich problem
Sib. Èlektron. Mat. Izv., 14 (2017), 511–517
-
Reconstruction of the convolution operator from the right-hand side on the real half-axis
Sib. Zh. Ind. Mat., 17:2 (2014), 32–40
-
Recovery solutions of the Volterra equation of the first kind of convolution on the half with incomplete data
Sib. Èlektron. Mat. Izv., 9 (2012), 464–471
-
Systems of convolution equations of the first and second kind on a finite interval and factorization of matrix-functions
Sibirsk. Mat. Zh., 53:5 (2012), 978–990
-
A method for determining the partial indices of symmetric matrix functions
Sibirsk. Mat. Zh., 52:1 (2011), 54–69
-
The Riemann boundary value problem in research of well-posednes of linear and nonlinear mathematical physics problems
Sib. Èlektron. Mat. Izv., 7 (2010), 112–122
-
Partial indices of unitary and Hermitian matrix functions
Sibirsk. Mat. Zh., 51:5 (2010), 1010–1016
-
Исследование интегрального уравнения второго рода в свертках на конечном интервале с периодическим ядром
Sib. Zh. Ind. Mat., 12:1 (2009), 31–39
-
The well-posednes of a convolution equations on a finite interval and of a system of Cauchy-type singular integral equations
Sib. Èlektron. Mat. Izv., 5 (2008), 456–464
-
Интегральное уравнения первого рода в свертках на конечном интервале с периодическим ядром
Sib. Zh. Ind. Mat., 11:1 (2008), 46–56
-
Necessary and sufficient well-posedness conditions for a convolution equation of the second kind with even kernel on a finite interval
Sibirsk. Mat. Zh., 49:4 (2008), 756–767
-
A complete generalization of the Wiener–Hopf method to convolution integral equations with integrable
kernel on a finite interval
Differ. Uravn., 40:9 (2004), 1190–1197
-
The Titchmarsh Theorem on Supports of Convolutions Generalized to Multidimensional Systems of Volterra Convolution Equations of the First Kind
Differ. Uravn., 39:3 (2003), 416–417
-
Volterra convolution equation of first kind on segment
Fundam. Prikl. Mat., 8:4 (2002), 955–966
-
An analogue of Picard's theorem for a convolution equation of the first kind with a smooth kernel
Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 7, 3–7
-
On the well-posedness of a boundary value problem on a line for three analytic functions
Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 4, 18–23
-
A Uniqueness Theorem for a Convolution Integral Equation of the First Kind with Differentiable Kernel on an Interval
Differ. Uravn., 37:10 (2001), 1342–1349
-
A System of Volterra Convolution Equations of the First Kind on a Finite Interval
Differ. Uravn., 37:9 (2001), 1258–1264
-
The Riemann boundary value problem for a half-plane with a coefficient that exponentially decreases at infinity
Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 9, 20–23
-
A class of second-order convolution equations on an interval
Differ. Uravn., 36:10 (2000), 1377–1384
-
Convolution equations on the half-line with symbols degenerating on an interval
Differ. Uravn., 36:4 (2000), 555–557
-
The Monte Carlo method with additional random sampling for calculating the flow of particles “at a point”
Zh. Vychisl. Mat. Mat. Fiz., 25:8 (1985), 1155–1163
© , 2025