RUS  ENG
Full version
PEOPLE

Ljubimtsev Oleg Vladimirovich

Publications in Math-Net.Ru

  1. Centrally essential semigroup algebras

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 219 (2023),  54–59
  2. Maximal and minimal ideals of centrally essential rings

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 219 (2023),  50–53
  3. Centrally essential semirings

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 219 (2023),  44–49
  4. Endomorphism of Abelian Groups as Modules over Their Endomorphism Rings

    Mat. Zametki, 109:6 (2021),  872–883
  5. Completely Decomposable Quotient Divisible Abelian Groups with Isomorphic Endomorphism Semigroups

    Mat. Zametki, 108:2 (2020),  224–235
  6. On a class of quotient divisible Abelian groups with isomorphic endomorphism semigroups

    Fundam. Prikl. Mat., 22:5 (2019),  121–130
  7. Unreduced generalized endoprimal abelian groups

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 11,  32–38
  8. On the Determinability of Mixed Abelian Groups by Their Endomorphism Semigroups

    Mat. Zametki, 103:3 (2018),  364–371
  9. On determinacy of completely decomposable quotient divisible abelian groups by its endomorphism semigroups

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 10,  75–82
  10. Nonreduced Abelian Groups with $\mathrm{UA}$-Rings of Endomorphisms

    Mat. Zametki, 101:3 (2017),  425–429
  11. $UA$-properties of modules over commutative Noetherian rings

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 11,  42–52
  12. Algebraically compact Abelian groups with $\mathrm{UA}$-rings of endomorphisms

    Fundam. Prikl. Mat., 20:5 (2015),  121–129
  13. Torsion-Free Modules with $\mathrm{UA}$-Rings of Endomorphisms

    Mat. Zametki, 98:6 (2015),  898–906
  14. Completely Decomposable Quotient Divisible Abelian Groups with $\mathrm{UA}$-Rings of Endomorphisms

    Mat. Zametki, 98:1 (2015),  125–133
  15. Mixed Abelian Groups with Isomorphic Endomorphism Semigroups

    Mat. Zametki, 97:4 (2015),  556–565
  16. On torsion-free Abelian groups with $UA$-rings of endomorphisms

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2011, no. 2(14),  55–58
  17. Abelian Groups as $\mathrm{UA}$-Modules over the Ring $\mathbb Z$

    Mat. Zametki, 87:3 (2010),  412–416
  18. Abelian groups as endomorphic modules over their endomorphism ring

    Fundam. Prikl. Mat., 13:1 (2007),  229–233
  19. Periodic Abelian Groups with $UA$-Rings of Endomorphisms

    Mat. Zametki, 70:5 (2001),  736–741
  20. Separable torsion free Abelian groups with $UA$-rings of endomorphisms

    Fundam. Prikl. Mat., 4:4 (1998),  1419–1422


© Steklov Math. Inst. of RAS, 2024