|
|
Publications in Math-Net.Ru
-
Exact estimates for higher order derivatives in Sobolev spaces
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 1, 3–10
-
Bernoulli numbers in the embedding constants of Sobolev spaces with different boundary conditions
Algebra i Analiz, 35:2 (2023), 226–245
-
Relationship Between the Best $L_p$ Approximations of Splines by Polynomials with Estimates of the Values of Intermediate Derivatives in Sobolev Spaces
Mat. Zametki, 114:4 (2023), 623–627
-
Chebyshev-Type Polynomials Arising in Poincaré Limit Inequalities
Mat. Zametki, 112:1 (2022), 153–157
-
String equation with weight that is a noncompact multiplier: continuous spectrum and eigenvalues
Algebra i Analiz, 33:4 (2021), 155–172
-
On Sharp Estimates of Even-Order Derivatives in Sobolev Spaces
Funktsional. Anal. i Prilozhen., 55:1 (2021), 43–55
-
Orthogonality Relations for the Primitives of Legendre Polynomials and Their Applications to Some Spectral Problems for Differential Operators
Mat. Zametki, 110:4 (2021), 498–506
-
On Hölder exponents of the self-similar functions
Funktsional. Anal. i Prilozhen., 53:1 (2019), 67–78
-
An explicit form for extremal functions in the embedding constant problem for Sobolev spaces
Tr. Mosk. Mat. Obs., 80:2 (2019), 221–246
-
On the Singularity of Functions and the Quantization of Probability Measures
Mat. Zametki, 102:4 (2017), 628–631
-
On the string equation with a singular weight belonging to the space
of multipliers in Sobolev spaces with negative index of smoothness
Izv. RAN. Ser. Mat., 80:6 (2016), 258–273
-
Description of Self-Similar Multipliers in Negative Sobolev Spaces Satisfying the Dirichlet Condition
Mat. Zametki, 99:2 (2016), 314–318
-
Asymptotics of the Spectrum of a Differential Operator with the Weight Generated by the Minkowski Function
Mat. Zametki, 97:2 (2015), 302–308
-
On the Neumann Problem for the Sturm–Liouville Equation with Cantor-Type Self-Similar Weight
Funktsional. Anal. i Prilozhen., 47:4 (2013), 18–29
-
Eigenvalue asymptotics of the problem of high odd order with dicrete self-similar weight
Algebra i Analiz, 24:2 (2012), 104–119
-
A boundedness criterion for the variations of self-similar functions
Sibirsk. Mat. Zh., 53:1 (2012), 68–88
-
Spectrum of a Jacobi matrix with exponentially growing matrix elements
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2011, no. 6, 15–21
-
Asymptotics of the Eigenvalues of the Sturm–Liouville Problem with Discrete Self-Similar Weight
Mat. Zametki, 88:5 (2010), 662–672
-
Singular points of a self-similar function of spectral order zero: self-similar Stieltjes string
Mat. Zametki, 88:2 (2010), 303–316
-
On the Construction and Some Properties of Self-Similar Functions in the Spaces $L_p[0,1]$
Mat. Zametki, 81:6 (2007), 924–938
-
Self-similar functions in $L_2[0,1]$ and the
Sturm–Liouville problem with singular indefinite weight
Mat. Sb., 197:11 (2006), 13–30
-
Indefinite Sturm–Liouville Problem for Some Classes of Self-similar Singular Weights
Trudy Mat. Inst. Steklova, 255 (2006), 88–98
-
Spectral properties of a certain operator matrix
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2004, no. 3, 23–30
-
Spectral problems associated with stability of fluid motion in an annulus in a magnetic field
Fundam. Prikl. Mat., 7:2 (2001), 583–596
-
Nontrivial fractals in the plane and linear operators with joint spectral radius equal to 1
Mat. Zametki, 63:5 (1998), 797–800
-
The eigenfunction system of a hydrodynamical problem is a Riesz basis
Mat. Zametki, 58:5 (1995), 790–793
-
On the basis properties of systems of root vectors of operators that are almost self-adjoint in Pontryagin spaces
Mat. Zametki, 57:6 (1995), 937–940
-
Spectral analysis of asymmetric disturbed Couette flow and related problems of hydrodynamic stability
Mat. Zametki, 57:2 (1995), 278–282
-
Andrei Andreevich Shkalikov (on his seventieth birthday)
Tr. Mosk. Mat. Obs., 80:2 (2019), 133–145
-
Олимпиада «Ломоносов»-2018. Математика
Kvant, 2018, no. 11, 54–55
-
Олимпиада «Покори Воробьевы горы!»
Kvant, 2017, no. 9, 53–55
-
Олимпиада «Ломоносов»-2017
Kvant, 2017, no. 4, 52–58
© , 2024