RUS  ENG
Full version
PEOPLE

Blokhin Alexander Mikhajlovich

Publications in Math-Net.Ru

  1. Search for stationary Poiseuille flows for an incompressible polymer fluid in channels with perforated walls

    Prikl. Mekh. Tekh. Fiz., 63:1 (2022),  33–41
  2. Lyapunov instability of stationary flows of a polymeric fluid in a channel with perforated walls

    Mat. Sb., 213:3 (2022),  3–20
  3. Finding steady Poiseuille-type flows for incompressible polymeric fluids by the relaxation method

    Zh. Vychisl. Mat. Mat. Fiz., 62:2 (2022),  305–319
  4. Studying of the relations on the flat strong discontinuity for the polymeric liquid

    Matem. Mod., 33:1 (2021),  89–104
  5. Линейная неустойчивость состояния покоя для МГД модели несжимаемой полимерной жидкости в случае абсолютной проводимости

    Mat. Tr., 24:1 (2021),  35–51
  6. Magnetohydrodynamic vortex motion of an incompressible polymeric fluid

    Sib. Zh. Ind. Mat., 24:1 (2021),  5–17
  7. Stationary “von Karman” vortex structures in the magnetohydrodynamical flows of rotating incompressible polymeric liquid

    Matem. Mod., 32:7 (2020),  3–23
  8. An MHD model of an incompressible polymeric fluid: linear instability of a steady state

    Sib. Zh. Ind. Mat., 23:3 (2020),  16–30
  9. Simulation of the stationary nonisothermal MHD flows of polymeric fluids in channels with interior heating elements

    Sib. Zh. Ind. Mat., 23:2 (2020),  17–40
  10. Derivation of linear and nonlinear acoustic systems for an incompressible viscoelastic polymer fluid

    Sib. Zh. Ind. Mat., 23:1 (2020),  16–27
  11. Stability of Poiseuille-type flows in an MHD model of an incompressible polymeric fluid

    Mat. Sb., 211:7 (2020),  3–23
  12. Symmetrization of MHD equations of incompressible viscoelastic polymer fluid

    Zh. Vychisl. Mat. Mat. Fiz., 60:5 (2020),  873–883
  13. On linear instability of the state of rest of an incompressible polymer fluid in the presence of strong discontinuity

    Zh. Vychisl. Mat. Mat. Fiz., 60:4 (2020),  687–699
  14. To the stability of a plane strong discontinuity with a polymer fluid flow through it with allowance for anisotropy

    Zh. Vychisl. Mat. Mat. Fiz., 59:10 (2019),  1752–1768
  15. On the linear instability of incompressible polymeric liquid flows with strong discontinuity

    Zhurnal Tekhnicheskoi Fiziki, 88:10 (2018),  1506–1514
  16. Asymptotic formula for the spectrum of the linear problem describing periodic polymer flows in the infinite channel

    Prikl. Mekh. Tekh. Fiz., 59:6 (2018),  39–51
  17. Incompressible polymer fluid flow past a flat wedge

    Prikl. Mekh. Tekh. Fiz., 59:1 (2018),  39–48
  18. Local solvability of the problem of the van der Waals gas flow around an infinite plane wedge in the case of a weak shock wave

    Sibirsk. Mat. Zh., 59:6 (2018),  1214–1239
  19. Stationary magnetohydrodynamical flows of non-isothermal polymeric liquid in the flat channel

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:4 (2018),  41–54
  20. Estimation of two error components in the numerical solution to the problem of nonisothermal flow of polymer fluid between two coaxial cylinders

    Zh. Vychisl. Mat. Mat. Fiz., 58:7 (2018),  1147–1163
  21. Asymptotics of the spectrum of a linearized problem of the stability of a stationary flow of an incompressible polymer fluid with a space charge

    Zh. Vychisl. Mat. Mat. Fiz., 58:1 (2018),  108–122
  22. Stationary currents of a weakly conducting incompressible polymeric fluid between coaxial cylinders

    Sib. Zh. Ind. Mat., 20:4 (2017),  13–21
  23. Stationary electrohydrodynamic flows of incompressible polymeric media with strong discontinuity

    Sib. J. Pure and Appl. Math., 17:2 (2017),  3–12
  24. Linear instability of the state of rest for an incompressible polymer liquid upon injection from the cathode and heating from the top

    Zh. Vychisl. Mat. Mat. Fiz., 57:11 (2017),  1831–1843
  25. Steady-state flow of an incompressible viscoelastic polymer fluid between two coaxial cylinders

    Zh. Vychisl. Mat. Mat. Fiz., 57:7 (2017),  1184–1197
  26. Construction of intermediate regions for a generalized van der Waals gas

    Zhurnal Tekhnicheskoi Fiziki, 86:12 (2016),  49–55
  27. Stationary solutions of equations describing the nonisothermal flow of an incompressible viscoelastic polymeric fluid

    Matem. Mod., 28:10 (2016),  3–22
  28. Stability of a supersonic flow past a wedge with adjoint weak neutrally stable shock wave

    Mat. Tr., 19:2 (2016),  3–41
  29. On one model of a vortex motion of an incompressible polymeric fluid in the axial zone

    Sib. Zh. Ind. Mat., 19:1 (2016),  52–61
  30. On linear stability of an incompressible polymer liquid at rest

    Sib. J. Pure and Appl. Math., 16:4 (2016),  17–27
  31. Stationary solutions to the equations describing the nonisothermic electrical convection of a weak-conductive incompressible polymeric fluid

    Sib. Zh. Ind. Mat., 18:1 (2015),  3–13
  32. Linear instability of the solutions in mathematical model that describe flows of polymer in an infinite channel

    Yakutian Mathematical Journal, 22:2 (2015),  16–27
  33. The flow of incompressible polymeric fluid between two coaxial cilinders

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 15:4 (2015),  24–34
  34. Linear instability of solutions in a mathematical model describing polymer flows in an infinite channel

    Zh. Vychisl. Mat. Mat. Fiz., 55:5 (2015),  850–875
  35. Numerical solution of a charge transport problem in DG-MOSFET

    Matem. Mod., 26:8 (2014),  126–148
  36. A stationary flow of an incompressible viscoelastic polymeric fluid through a channel with elliptical cross section

    Sib. Zh. Ind. Mat., 17:4 (2014),  38–47
  37. Linear asymptotic instability of a stationary flow of a polymeric medium in a plane channel in the case of periodic perturbations

    Sib. Zh. Ind. Mat., 17:3 (2014),  13–25
  38. Stationary solutions of equations of incompressible viscoelastic polymer liquid

    Zh. Vychisl. Mat. Mat. Fiz., 54:5 (2014),  845–870
  39. The symmetrization of the equations of incompressible viscoelastic polymeric fluid

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:1 (2013),  24–31
  40. On an algorithm for finding the electric potential distribution in the DG-MOSFET transistor

    Zh. Vychisl. Mat. Mat. Fiz., 53:6 (2013),  979–1003
  41. Modular Modeling of the Human Cardiovascular System

    Mat. Biolog. Bioinform., 7:2 (2012),  703–736
  42. Numerical analysis of the realizability of the conditions of neutral stability for shock waves in the problem of a flow past a wedge by a van der Waals gas

    Sib. Zh. Ind. Mat., 15:4 (2012),  51–63
  43. Regularity of the solution and well-posedness of a mixed problem for an elliptic system with quadratic nonlinearity in gradients

    Zh. Vychisl. Mat. Mat. Fiz., 52:10 (2012),  1866–1882
  44. The numerical investigation of parametrical instability in layered structures

    Matem. Mod., 23:6 (2011),  81–97
  45. About the Question of $t$-Hyperbolicity of a Nonstationary System, Describing Flows of Polymeric Mediums

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:2 (2011),  3–14
  46. Justification of the stabilization method for a mathematical model of charge transport in semiconductors

    Zh. Vychisl. Mat. Mat. Fiz., 51:8 (2011),  1495–1517
  47. On calculation of the electric potential for 2D silicon transistor with a silicon oxide nanochannel

    Matem. Mod., 22:9 (2010),  79–94
  48. The construction of a class of numerical algorithms in the ballistic diode problem

    Matem. Mod., 22:7 (2010),  3–21
  49. The well-posedness of the linearized problem of a supersonic stream over a wedge under arbitrary perturbations

    Sib. Zh. Ind. Mat., 13:1 (2010),  3–17
  50. Construction of numerical algorithms for the ballistic diode problem

    Zh. Vychisl. Mat. Mat. Fiz., 50:1 (2010),  188–208
  51. Designing of computational algorithm for system of moment equations which describe charge transport in semiconductors

    Matem. Mod., 21:4 (2009),  15–34
  52. Stability of a supersonic flow about a wedge with weak shock wave

    Mat. Sb., 200:2 (2009),  3–30
  53. On an Approach to the Construction of Difference Schemes for the Momentum Equations of Charge Transport in Semiconductors

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:4 (2009),  3–15
  54. Stability of the Layered Systems at the Presence of the Electric Current

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:1 (2009),  24–34
  55. On the Stability of the Shock Waves at the Presence of the Electric Current

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 8:3 (2008),  26–50
  56. The construction of modified symmetrizer for a single class of symmetrical systems

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 7:1 (2007),  9–28
  57. Shock waves in neutron medium

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 5:1 (2005),  3–14
  58. Asymptotic stability of the equilibrium state in the case of constant doping density

    Sib. Zh. Ind. Mat., 5:1 (2002),  3–7
  59. On the stability of shock waves

    Sib. Zh. Ind. Mat., 3:2 (2000),  23–28
  60. On the stability of shock waves for some models of continuum mechanics

    Sib. Zh. Ind. Mat., 3:1 (2000),  33–46
  61. Asymptotical stability of an equilibrium for the gasdynamical model of carrier transport in semiconductors

    Sibirsk. Mat. Zh., 41:4 (2000),  744–757
  62. Asymptotic stability of the equilibrium state for a simplified gas dynamic model of charge transport in semiconductors

    Sib. Zh. Ind. Mat., 2:2 (1999),  15–23
  63. Global solvability of the piston problem

    Sib. Zh. Ind. Mat., 2:1 (1999),  13–24
  64. On an approach to the construction of difference schemes for quasilinear equations of gas dynamics

    Sibirsk. Mat. Zh., 40:6 (1999),  1236–1243
  65. Stability of the equilibrium state for a hydrodynamic model of charge transport in semiconductors

    Sibirsk. Mat. Zh., 40:5 (1999),  1012–1022
  66. On the stability of shock waves in a continuous medium with a space charge

    Prikl. Mekh. Tekh. Fiz., 39:2 (1998),  29–39
  67. Investigation of the stability of the equilibrium state for a gas dynamic model of charge transport in semiconductors

    Sib. Zh. Ind. Mat., 1:1 (1998),  41–56
  68. Numerical investigation of the hydrodynamic model equations of charge transport in semiconductors

    Matem. Mod., 9:3 (1997),  40–50
  69. Global resolving of the problem of supersonic flow around a cone

    Matem. Mod., 8:4 (1996),  89–104
  70. Shock-wave stability for one model of radiation hydrodynamics

    Prikl. Mekh. Tekh. Fiz., 37:6 (1996),  3–14
  71. Symmetrization of a system of equations of radiative hydrodynamics, and global solvability of the Cauchy problem

    Sibirsk. Mat. Zh., 37:6 (1996),  1256–1265
  72. Stability of a fast magnetohydrodynamic shock wave in plasma with anisotropic pressure

    Prikl. Mekh. Tekh. Fiz., 36:4 (1995),  16–35
  73. Stability analysis of steady supersonic flow regimes past infinite wedge

    Prikl. Mekh. Tekh. Fiz., 36:2 (1995),  182–196
  74. Strong discontinuities in a superfluid

    Trudy Inst. Mat. SO RAN, 24 (1994),  20–62
  75. Rotational discontinuity in magnetohydrodynamics with anisotropic pressure. II

    Sibirsk. Mat. Zh., 35:2 (1994),  278–287
  76. Rotational discontinuity in magnetohydrodynamics with anisotropic pressure. I

    Sibirsk. Mat. Zh., 35:1 (1994),  12–23
  77. On stability of shock waves in magnetohydrodynamics with anisotropic pressure

    Sibirsk. Mat. Zh., 34:6 (1993),  10–22
  78. Rotational discontinuity in magnetohydrodynamics

    Sibirsk. Mat. Zh., 34:3 (1993),  3–18
  79. A study of a differential-difference model for a linear mixed problem of supersonic flow around a wedge

    Trudy Inst. Mat. SO RAN, 22 (1992),  43–55
  80. The method of lines for equations of gas dynamics: theoretical justification and numerical experiments

    Trudy Inst. Mat. SO RAN, 22 (1992),  22–43
  81. Theory and computation of third-order aberrations of cathode systems

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 18 (1990),  3–75
  82. Well-posedness of some linear problems on the stability of strong discontinuities in magnetohydrodynamics

    Sibirsk. Mat. Zh., 31:2 (1990),  3–8
  83. Stability investigation for a certain explicit difference scheme

    Sibirsk. Mat. Zh., 31:1 (1990),  34–38
  84. Stability of shock waves in magnetohydrodynamics

    Sibirsk. Mat. Zh., 30:4 (1989),  13–29
  85. A mixed problem for the wave equation in a domain with a corner (the scalar case)

    Sibirsk. Mat. Zh., 30:3 (1989),  16–23
  86. Application of difference analogues of dissipative energy integrals to the investigation of the stability of difference schemes

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 11 (1988),  67–93
  87. The well-posedness of a linear mixed problem on supersonic flow around a wedge

    Sibirsk. Mat. Zh., 29:5 (1988),  48–58
  88. Uniqueness of the classical solution of a mixed problem for equations of gas dynamics with boundary conditions on a shock wave

    Sibirsk. Mat. Zh., 23:5 (1982),  17–30
  89. Estimation of the energy integral of a mixed problem for gas dynamics equations with boundary conditions on the shock wave

    Sibirsk. Mat. Zh., 22:4 (1981),  23–51


© Steklov Math. Inst. of RAS, 2024