Speciality:
01.01.06 (Mathematical logic, algebra, and number theory)
Birth date:
21.04.1956
E-mail: Keywords: finite groups,
representations of finite groups,
characters of finite groups.
Subject:
The structure of $\pi$–solvable complex linear groups of relatively small degree, whose Hall $\pi$–subgroup is T. I., was established. The conditions that ensure that all irreducible characters of the normalizer of a Hall subgroup of a solvable group $G$ can be extended to $G$, were obtained. The normal structure of a $\pi$–separable irreducible complex linear group of $\pi'$–degree $n$ was investigated, under some hypothesys on Hall $\pi(n)$–subgroup (jointly with A. V. Romanovski).Hence follows, in some particular cases, the Isaacs conjecture on $p$–solvable irreducible linear groups. The $p$–solvable complex linear groups containing a $p$–element with non-full spectrum were investigated.
Main publications:
Romanovskii A. V., Yadchenko A. A. O silovskikh podgruppakh lineinykh grupp // Mat. sbornik, 1988, 137(179), 12, 568–572.
Yadchenko A. A. Razreshimye neprivodimye lineinye gruppy proizvol'noi stepeni s khollovskoi TI–podgruppoi // Mat. zametki, 1990, 48, 2, 137–144.
Romanovskii A. V., Yadchenko A. A. Monomialnye kharaktery i normalnye podgruppy konechnykh grupp // Ukr. matem. zhurnal, 1991, 43, 78, 991–996.
Yadchenko A. A. O spektrakh $p$–lementov konechnykh kompleksnykh $p$–razreshimykh lineinykh grupp // Mat. zametki, 1991, 60, 3, 143–150.
Yadchenko A. A., Romanovskii A. B. K probleme Aizeksa o konechnykh $p$–razreshimykh lineinykh gruppakh // Mat. zametki, 2001, 69, 1, 144–152.