RUS  ENG
Full version
PEOPLE

Sigal Israel Khaimovich

Publications in Math-Net.Ru

  1. Accounting for the time characteristics of a class of scheduling problems for moving processor

    Avtomat. i Telemekh., 2015, no. 12,  121–134
  2. Load balancing in solving problems based on estimates of the computational complexity of subproblems

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2015, no. 1,  10–18
  3. On a lower bound on the computational complexity of a parallel implementation of the branch-and-bound method

    Avtomat. i Telemekh., 2010, no. 10,  156–166
  4. Application of parallel heuristic algorithms for speeding up parallel implementations of the branch-and-bound method

    Zh. Vychisl. Mat. Mat. Fiz., 47:9 (2007),  1524–1537
  5. Speedup estimates for some variants of the parallel implementations of the branch-and-bound method

    Zh. Vychisl. Mat. Mat. Fiz., 46:12 (2006),  2289–2304
  6. Investigation of algorithms for parallel computations in knapsack-type discrete optimization problems

    Zh. Vychisl. Mat. Mat. Fiz., 45:10 (2005),  1801–1809
  7. Numerical analysis of algorithms for solving bicriteria discrete programming problems

    Zh. Vychisl. Mat. Mat. Fiz., 40:11 (2000),  1602–1610
  8. Study of the linear parametrization of criteria in the bicriteria knapsack problem

    Zh. Vychisl. Mat. Mat. Fiz., 39:5 (1999),  753–758
  9. Numerical analysis of tricriteria tree and assignment problems

    Zh. Vychisl. Mat. Mat. Fiz., 38:10 (1998),  1780–1787
  10. Analysis of Branch-and-Bound Parameters of Solutions in the Symmetric Traveling Salesman Problem

    Avtomat. i Telemekh., 1997, no. 10,  186–192
  11. The linear convolution of criteria in the bicriteria traveling salesman problem

    Zh. Vychisl. Mat. Mat. Fiz., 37:8 (1997),  933–936
  12. A computational investigation of linear parametrization of criteria in multicriteria discrete programming

    Zh. Vychisl. Mat. Mat. Fiz., 36:10 (1996),  23–25
  13. Computational stability of a linear convolution of criteria in multicriterial discrete programming

    Dokl. Akad. Nauk, 345:4 (1995),  463–466
  14. Investigation of a linear convolution of criteria in multicriterial discrete programming

    Zh. Vychisl. Mat. Mat. Fiz., 35:8 (1995),  1260–1270
  15. Algorithms for solving the two-criterion large-scale travelling salesman problem

    Zh. Vychisl. Mat. Mat. Fiz., 34:1 (1994),  44–57
  16. The traveling salesman problem. Approximate algorithms

    Avtomat. i Telemekh., 1989, no. 11,  3–26
  17. The traveling salesman's problem. Exact methods

    Avtomat. i Telemekh., 1989, no. 10,  3–29
  18. The traveling salesman problem. Issues in theory

    Avtomat. i Telemekh., 1989, no. 9,  3–33
  19. A sequence for using algorithms for the approximate solution in the hybrid algorithm for solving the travelling salesman problem

    Zh. Vychisl. Mat. Mat. Fiz., 29:11 (1989),  1714–1721
  20. An algorithm for the approximate solution of a large-scale travelling salesman problem in a plane

    Zh. Vychisl. Mat. Mat. Fiz., 28:8 (1988),  1268–1272
  21. An algorithm for solving large-scale travelling-salesman problems and its numerical implementation

    Zh. Vychisl. Mat. Mat. Fiz., 27:8 (1987),  1145–1153
  22. Computational implementation of a combined branch and bound algorithm for the travelling-salesman problem

    Zh. Vychisl. Mat. Mat. Fiz., 26:5 (1986),  664–672
  23. Computing algorithms for determination of the radius of stability in choice problems

    Zh. Vychisl. Mat. Mat. Fiz., 23:4 (1983),  973–979
  24. A method of matrix analysis and its application to a problem in the theory of graphs

    Zh. Vychisl. Mat. Mat. Fiz., 5:1 (1965),  148–150


© Steklov Math. Inst. of RAS, 2024