RUS  ENG
Full version
PEOPLE

Zaika Yury Vasilievich

Publications in Math-Net.Ru

  1. Computational algorithm for solving the nonlinear boundary-value problem of hydrogen permeability with dynamic boundary conditions and concentration-dependent diffusion coefficient

    Computer Research and Modeling, 16:5 (2024),  1179–1193
  2. Нybrid model of hydrogen thermodesorption from structural materials

    Zhurnal Tekhnicheskoi Fiziki, 94:12 (2024),  1959–1963
  3. Qualitative and parametric identification of two-peak hydrogen thermal desorption spectra

    Zhurnal Tekhnicheskoi Fiziki, 93:12 (2023),  1720–1723
  4. Peaks of hydrogen thermal desorption: simulation and interpretation

    Zhurnal Tekhnicheskoi Fiziki, 91:2 (2021),  222–231
  5. Modelling of fast hydrogen permeability of alloys for membrane gas separation

    Zhurnal Tekhnicheskoi Fiziki, 87:5 (2017),  651–658
  6. Computer simulation of hydrogen thermal desorption spectra

    Mat. Model., 29:4 (2017),  121–136
  7. Modeling of $\rm H_2$-permeability of alloys for gas separation membranes

    Computer Research and Modeling, 8:1 (2016),  121–135
  8. Modeling of thermal desorption and hydrogen permeability

    Computer Research and Modeling, 6:5 (2014),  679–703
  9. Diffusion peak of TDS-spectrum of dehydriding: boundary-value problem with moving bounds

    Mat. Model., 20:11 (2008),  67–79
  10. Modelling high-temperature peak of TDS spectra of dehydrogenation

    Mat. Model., 18:4 (2006),  100–112
  11. Chernov. Boundary-value problem with dynamical boundary conditions and moving phase bound (dehydrating kinetics)

    Mat. Model., 16:4 (2004),  3–16
  12. Integral observation operators of nonlinear dynamical systems

    Fundam. Prikl. Mat., 7:3 (2001),  735–760
  13. Parametric regularisation of the hydrogen permeability model with dynamic boundary conditions

    Mat. Model., 13:11 (2001),  69–87
  14. Stable discrete observation programs in analytic dynamical systems

    Mat. Zametki, 66:2 (1999),  194–201
  15. Интегральные операторы восстановления фазового вектора динамических систем

    Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 1999, no. 6,  15–24
  16. Suboptimal integral observation operators in dynamical systems with delay

    Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 1997, no. 4,  62–75
  17. Математическое обоснование модели диффузии с обратимым захватом и динамическими граничными условиями

    Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 1996, no. 3,  137–171
  18. The solvability of the equations for a model of gas transfer through membranes with dynamic boundary conditions

    Zh. Vychisl. Mat. Mat. Fiz., 36:12 (1996),  108–120
  19. Среднеквадратичная оценка функционалов на решениях систем с запаздыванием и случайными возмущениями

    Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 1995, no. 2,  19–30
  20. Интегральные операторы идеального наблюдения динамических систем

    Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 1993, no. 1,  8–21
  21. Zeros of holomorphic functions, and integral operators for observing dynamical systems

    Mat. Sb., 184:12 (1993),  65–86
  22. Conjugate problems of the identification of dynamical systems

    Differ. Uravn., 24:5 (1988),  770–776


© Steklov Math. Inst. of RAS, 2025