RUS  ENG
Full version
PEOPLE

Akishev Gabdolla Akishevich

Publications in Math-Net.Ru

  1. Estimates of $M$–term approximations of functions of several variables in the Lorentz space by a constructive method

    Eurasian Math. J., 15:2 (2024),  8–32
  2. Inequalities for the best “angular” approximation and the smoothness modulus of a function in the Lorentz space

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 230 (2023),  8–24
  3. On orders of $n$-term approximations of functions of many variables in the Lorentz space

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 227 (2023),  3–19
  4. On estimates of the order of the best $M$-term approximations of functions of several variables in the anisotropic Lorentz – Zygmund space

    Izv. Saratov Univ. Math. Mech. Inform., 23:2 (2023),  142–156
  5. Nikol'skii's inequality of different metrics for trigonometric polynomials in a space with mixed asymmetric norm

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:4 (2023),  11–26
  6. On estimates for orders of best $M$-term approximations of multivariate functions in anisotropic Lorentz–Karamata spaces

    Ufimsk. Mat. Zh., 15:1 (2023),  3–21
  7. On estimates of linear widths for classes of multivariate functions in the Lorentz space

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022),  23–39
  8. On the best M-term approximations of functions from the Nikol'skii-Besov class in the Lorentz space

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:1 (2022),  7–26
  9. Estimates for the best approximations of functions from the Nikol'skii-Besov class in the Lorentz space by trigonometric polynomials

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:2 (2020),  5–27
  10. Estimates of best approximations of functions with logarithmic smoothness in the Lorentz space with anisotropic norm

    Ural Math. J., 6:1 (2020),  16–29
  11. On the exactness of the inequality of different metrics for trigonometric polynomials in the generalized Lorentz space

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:2 (2019),  9–20
  12. An inequality of different metrics in the generalized Lorentz space

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:4 (2018),  5–18
  13. Estimates for best approximations of functions from the logarithmic smoothness class in the Lorentz space

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017),  3–21
  14. On approximation orders of functions of several variables in the Lorentz space

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  13–28
  15. Estimates for Kolmogorov widths of the Nikol'skii — Besov — Amanov classes in the Lorentz space

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015),  3–13
  16. On the exact estimations of the best $M$–terms approximation of the Besov class

    Sib. Èlektron. Mat. Izv., 7 (2010),  255–274
  17. Absolute convergence of Fourier series of superpositions of functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 11,  3–11
  18. The ortho-diameters of Nikol'skii and Besov classes in the Lorentz spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 2,  25–33
  19. On degree of approximation of classes in Lorentz space

    Sib. Èlektron. Mat. Izv., 5 (2008),  51–67
  20. Convergence of Double Fourier Series of Functions from Symmetric Spaces

    Mat. Zametki, 81:3 (2007),  323–327
  21. On Orders of Approximation of Function Classes in Lorentz spaces with Anisotropic Norm

    Mat. Zametki, 81:1 (2007),  3–16
  22. On degrees of approximation of some classes by polynomials with respect to generalized Haar system

    Sib. Èlektron. Mat. Izv., 3 (2006),  92–105
  23. Approximation of function classes in spaces with mixed norm

    Mat. Sb., 197:8 (2006),  17–40
  24. On degree of approximation function classes in the space Lebesgue with anisotropic norm

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 148:2 (2006),  5–17
  25. On orders of approximation of function classes by polynomials in the generalized Haar system

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 3,  13–22
  26. Generalized Haar system and theorems of embedding into symmetrical spaces

    Fundam. Prikl. Mat., 8:2 (2002),  319–334
  27. On some theorems for the Price system

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 1,  3–8
  28. On the absolute convergence of Fourier series in the generalized Haar system

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 3,  8–16

  29. Corrections to the paper “Generalized Haar system and theorems of embedding into symmetrical spaces” (Fundamentalnaya i Prikladnaya Matematika, Vol. 8, No. 2, 319–334 (2002))

    Fundam. Prikl. Mat., 15:5 (2009),  209–210
  30. Erratum to “On degree of approximation of classes polynomials with respect to generalized Haar system”

    Sib. Èlektron. Mat. Izv., 5 (2008),  383–386


© Steklov Math. Inst. of RAS, 2024