|
|
Publications in Math-Net.Ru
-
Estimates of $M$–term approximations of functions of several variables in the Lorentz space by a constructive method
Eurasian Math. J., 15:2 (2024), 8–32
-
Inequalities for the best “angular” approximation and the smoothness modulus of a function in the Lorentz space
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 230 (2023), 8–24
-
On orders of $n$-term approximations of functions of many variables in the Lorentz space
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 227 (2023), 3–19
-
On estimates of the order of the best $M$-term approximations of functions of several variables in the anisotropic Lorentz – Zygmund space
Izv. Saratov Univ. Math. Mech. Inform., 23:2 (2023), 142–156
-
Nikol'skii's inequality of different metrics for trigonometric polynomials in a space with mixed asymmetric norm
Trudy Inst. Mat. i Mekh. UrO RAN, 29:4 (2023), 11–26
-
On estimates for orders of best $M$-term approximations
of multivariate functions in anisotropic Lorentz–Karamata spaces
Ufimsk. Mat. Zh., 15:1 (2023), 3–21
-
On estimates of linear widths for classes of multivariate functions in the Lorentz space
Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022), 23–39
-
On the best M-term approximations of functions from the Nikol'skii-Besov class in the Lorentz space
Trudy Inst. Mat. i Mekh. UrO RAN, 28:1 (2022), 7–26
-
Estimates for the best approximations of functions from the Nikol'skii-Besov class in the Lorentz space by trigonometric polynomials
Trudy Inst. Mat. i Mekh. UrO RAN, 26:2 (2020), 5–27
-
Estimates of best approximations of functions with logarithmic smoothness in the Lorentz space with anisotropic norm
Ural Math. J., 6:1 (2020), 16–29
-
On the exactness of the inequality of different metrics for trigonometric polynomials in the generalized Lorentz space
Trudy Inst. Mat. i Mekh. UrO RAN, 25:2 (2019), 9–20
-
An inequality of different metrics in the generalized Lorentz space
Trudy Inst. Mat. i Mekh. UrO RAN, 24:4 (2018), 5–18
-
Estimates for best approximations of functions from the logarithmic smoothness class in the Lorentz space
Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017), 3–21
-
On approximation orders of functions of several variables in the Lorentz space
Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016), 13–28
-
Estimates for Kolmogorov widths of the Nikol'skii — Besov — Amanov classes in the Lorentz space
Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015), 3–13
-
On the exact estimations of the best $M$–terms approximation of the Besov class
Sib. Èlektron. Mat. Izv., 7 (2010), 255–274
-
Absolute convergence of Fourier series of superpositions of functions
Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 11, 3–11
-
The ortho-diameters of Nikol'skii and Besov classes in the Lorentz spaces
Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 2, 25–33
-
On degree of approximation of classes in Lorentz space
Sib. Èlektron. Mat. Izv., 5 (2008), 51–67
-
Convergence of Double Fourier Series of Functions from Symmetric Spaces
Mat. Zametki, 81:3 (2007), 323–327
-
On Orders of Approximation of Function Classes in Lorentz spaces with Anisotropic Norm
Mat. Zametki, 81:1 (2007), 3–16
-
On degrees of approximation of some classes by polynomials with respect to generalized Haar system
Sib. Èlektron. Mat. Izv., 3 (2006), 92–105
-
Approximation of function classes in spaces with mixed
norm
Mat. Sb., 197:8 (2006), 17–40
-
On degree of approximation function classes in the space Lebesgue with anisotropic norm
Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 148:2 (2006), 5–17
-
On orders of approximation of function classes by polynomials in the generalized Haar system
Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 3, 13–22
-
Generalized Haar system and theorems of embedding into symmetrical spaces
Fundam. Prikl. Mat., 8:2 (2002), 319–334
-
On some theorems for the Price system
Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 1, 3–8
-
On the absolute convergence of Fourier series in the generalized Haar system
Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 3, 8–16
-
Corrections to the paper “Generalized Haar system and theorems of embedding into symmetrical spaces” (Fundamentalnaya i Prikladnaya Matematika, Vol. 8, No. 2, 319–334 (2002))
Fundam. Prikl. Mat., 15:5 (2009), 209–210
-
Erratum to “On degree of approximation of classes polynomials with respect to generalized Haar system”
Sib. Èlektron. Mat. Izv., 5 (2008), 383–386
© , 2024