| 
	
        
	
                        
	 | 
	
	
	
	
 
	
  
	
	
        
	  
			Publications in Math-Net.Ru
			
				- 
				Letter to the editor
Itogi Nauki i Tekhniki.  Sovrem. Mat. Pril. Temat. Obz., 238 (2025),  101–102	 
					- 
				On estimates of the best $M$-term approximations of functions of many variables in a space with a uniform metric
Izv. Saratov Univ. Math. Mech. Inform., 25:2 (2025),  154–166	 
					- 
				Estimates of $M$–term approximations of functions of several variables in the Lorentz space by a constructive method
Eurasian Math. J., 15:2 (2024),  8–32	 
					- 
				On estimates of the approximation of functions from a symmetric space by Fourier sums in the uniform metric
Trudy Inst. Mat. i Mekh. UrO RAN, 30:4 (2024),  9–26	 
					- 
				Inequalities for the best “angular” approximation and the smoothness modulus of a function in the Lorentz space
Itogi Nauki i Tekhniki.  Sovrem. Mat. Pril. Temat. Obz., 230 (2023),  8–24	 
					- 
				On orders of $n$-term approximations of functions of many variables in the Lorentz space
Itogi Nauki i Tekhniki.  Sovrem. Mat. Pril. Temat. Obz., 227 (2023),  3–19	 
					- 
				On estimates of the order of the best $M$-term approximations of functions of several variables in the anisotropic Lorentz – Zygmund space
Izv. Saratov Univ. Math. Mech. Inform., 23:2 (2023),  142–156	 
					- 
				Nikol'skii's inequality of different metrics for trigonometric polynomials in a space with mixed asymmetric norm
Trudy Inst. Mat. i Mekh. UrO RAN, 29:4 (2023),  11–26	 
					- 
				On estimates for orders of best $M$-term  approximations
of multivariate  functions  in  anisotropic Lorentz–Karamata spaces
Ufimsk. Mat. Zh., 15:1 (2023),  3–21	 
					- 
				On estimates of linear widths for classes of multivariate functions in the Lorentz space
Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022),  23–39	 
					- 
				On the best M-term approximations of functions from the Nikol'skii-Besov class in the Lorentz space
Trudy Inst. Mat. i Mekh. UrO RAN, 28:1 (2022),  7–26	 
					- 
				Estimates for the best approximations of functions from the Nikol'skii-Besov class in the Lorentz space by trigonometric polynomials
Trudy Inst. Mat. i Mekh. UrO RAN, 26:2 (2020),  5–27	 
					- 
				Estimates of best approximations of functions with logarithmic smoothness in the Lorentz space with anisotropic norm
Ural Math. J., 6:1 (2020),  16–29	 
					- 
				On the exactness of the inequality of different metrics for trigonometric polynomials in the generalized Lorentz space
Trudy Inst. Mat. i Mekh. UrO RAN, 25:2 (2019),  9–20	 
					- 
				An inequality of different metrics in the generalized Lorentz space
Trudy Inst. Mat. i Mekh. UrO RAN, 24:4 (2018),  5–18	 
					- 
				Estimates for best approximations of functions from the logarithmic smoothness class in the Lorentz space
Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017),  3–21	 
					- 
				On approximation orders of functions of several variables in the Lorentz space
Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  13–28	 
					- 
				Estimates for Kolmogorov widths of the Nikol'skii — Besov — Amanov classes in the Lorentz space
Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015),  3–13	 
					- 
				On the exact estimations of the best $M$–terms approximation of the Besov class
Sib. Èlektron. Mat. Izv., 7 (2010),  255–274	 
					- 
				Absolute convergence of Fourier series of superpositions of functions
Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 11,  3–11	 
					- 
				The ortho-diameters of Nikol'skii and Besov classes in the Lorentz spaces
Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 2,  25–33	 
					- 
				On degree of approximation of classes in Lorentz space
Sib. Èlektron. Mat. Izv., 5 (2008),  51–67	 
					- 
				Convergence of Double Fourier Series of Functions from Symmetric Spaces
Mat. Zametki, 81:3 (2007),  323–327	 
					- 
				On Orders of Approximation of Function Classes in Lorentz spaces with Anisotropic Norm
Mat. Zametki, 81:1 (2007),  3–16	 
					- 
				On degrees of approximation of some classes by polynomials with respect to generalized Haar system
Sib. Èlektron. Mat. Izv., 3 (2006),  92–105	 
					- 
				Approximation of function classes in spaces with mixed
norm
Mat. Sb., 197:8 (2006),  17–40	 
					- 
				On degree of approximation function classes in the space Lebesgue with anisotropic norm
Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 148:2 (2006),  5–17	 
					- 
				On orders of approximation of function classes by polynomials in the generalized Haar system
Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 3,  13–22	 
					- 
				Generalized Haar system and theorems of embedding into symmetrical spaces
Fundam. Prikl. Mat., 8:2 (2002),  319–334	 
					- 
				On some theorems for the Price system
Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 1,  3–8	 
					- 
				On the absolute convergence of Fourier series in the generalized Haar system
Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 3,  8–16	 
					
						- 
				Corrections to the paper “Generalized Haar system and theorems of embedding into symmetrical spaces” (Fundamentalnaya i Prikladnaya Matematika, Vol. 8, No. 2, 319–334 (2002))
Fundam. Prikl. Mat., 15:5 (2009),  209–210	 
					- 
				Erratum to “On degree of approximation of classes polynomials with respect to generalized Haar system”
Sib. Èlektron. Mat. Izv., 5 (2008),  383–386	 
					
			 
				
	
	
	
	© , 2025