|   |  | 
	
	
	
 
	
  
	
	
        
	  
			Publications in Math-Net.Ru
			
				- 
				On unattainability of infinity boundary of domain for a diffusion semi-Markov process with stop
 
 Zap. Nauchn. Sem. POMI, 525 (2023),  150–160
- 
				Distribution density of the first exit point of a two-dimensional diffusion process from a circle neighborhood of its initial point: the inhomogeneous case
 
 Teor. Veroyatnost. i Primenen., 67:2 (2022),  247–263
- 
				Time distribution from zero up to beginning of the final stop of semi-Markov diffusion process on interval with unattainable boundaries
 
 Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9:3 (2022),  517–526
- 
				On the limit distribution function for meanings of a diffusion semi-Markov process on interval with unattainable boundaries
 
 Zap. Nauchn. Sem. POMI, 505 (2021),  312–323
- 
				On a sufficient condition for a diffusion process will nether reach boundaries of some interval
 
 Zap. Nauchn. Sem. POMI, 495 (2020),  291–304
- 
				On distribution density of the first exit point of a diffusion process with break from a small circle neighborhood of its initial point
 
 Zap. Nauchn. Sem. POMI, 486 (2019),  286–302
- 
				Efficiency of a two-channel system with restructuring and insurance
 
 Avtomat. i Telemekh., 2018, no. 4,  46–64
- 
				On the integral of diffusion process on an interval with unattainable edges  boundaries: semi-Markov approach
 
 Zap. Nauchn. Sem. POMI, 474 (2018),  233–240
- 
				On unattainable boundaries of a diffusion process range of values: semi-Markov approach
 
 Zap. Nauchn. Sem. POMI, 466 (2017),  313–330
- 
				On integral of a semi-Markov diffusion process
 
 Zap. Nauchn. Sem. POMI, 454 (2016),  276–291
- 
				Final distribution of diffusion process: semi-Markov approach
 
 Teor. Veroyatnost. i Primenen., 60:3 (2015),  506–524
- 
				On interval of faultless work for a system of two independent alternating renewal processes
 
 Zap. Nauchn. Sem. POMI, 442 (2015),  143–165
- 
				Final distribution of a diffusion process with a final stop
 
 Zap. Nauchn. Sem. POMI, 431 (2014),  209–241
- 
				Preserving of Markovness whilst delayed reflection
 
 Zap. Nauchn. Sem. POMI, 420 (2013),  157–174
- 
				Non-decreasing continuous semi-Markov processes: asymptotics and asymmetry
 
 Zap. Nauchn. Sem. POMI, 412 (2013),  227–236
- 
				On movement of Brownian particles along a delaying screen
 
 Zap. Nauchn. Sem. POMI, 396 (2011),  175–194
- 
				On delay and asymmetry points of one-dimensional semi-Markov diffusion processes
 
 Zap. Nauchn. Sem. POMI, 384 (2010),  291–309
- 
				On Markov diffusion processes with delayed reflection from interval's boundary
 
 Zap. Nauchn. Sem. POMI, 368 (2009),  243–267
- 
				Optimal local first exit time
 
 Zap. Nauchn. Sem. POMI, 361 (2008),  83–108
- 
				Diffusion processes with delay on ends of a segment
 
 Zap. Nauchn. Sem. POMI, 351 (2007),  284–297
- 
				Stochastic integral in case of infinite expectation
of the first exit time
 
 Zap. Nauchn. Sem. POMI, 341 (2007),  197–219
- 
				Optimal time substitution in a control process
 
 Avtomat. i Telemekh., 2005, no. 8,  64–83
- 
				Stochastic integral with respect to a semi-Markov process of diffusion type
 
 Zap. Nauchn. Sem. POMI, 328 (2005),  251–276
- 
				Inverse process with independent positive increments: finite-dimensional distributions
 
 Zap. Nauchn. Sem. POMI, 311 (2004),  286–297
- 
				Choosing the Instant of Insurance Commencement
 
 Avtomat. i Telemekh., 2003, no. 7,  134–142
- 
				Characteristic operator of a diffusion process
 
 Zap. Nauchn. Sem. POMI, 298 (2003),  226–251
- 
				Absolute continuity of measures in the class of semi-Markov processes of diffusion type
 
 Zap. Nauchn. Sem. POMI, 294 (2002),  216–244
- 
				Ergodicity conditions and stationary distributions of a continuous semi-Markov process
 
 Zap. Nauchn. Sem. POMI, 278 (2001),  285–309
- 
				Semi-Markov processes for finding a maximum
 
 Avtomat. i Telemekh., 2000, no. 9,  97–111
- 
				On the distribution density of the first exit point of a diffusion process form a small neighborhood of its initial position
 
 Teor. Veroyatnost. i Primenen., 45:3 (2000),  536–554
- 
				Asymptotics for curve with the density given in zero, of a point of the first exit for Wiener process
 
 Zap. Nauchn. Sem. POMI, 260 (1999),  290–297
- 
				An optimal service regime for a system with an observable failure hazard
 
 Avtomat. i Telemekh., 1998, no. 4,  117–134
- 
				Inverse first exit problem for Wiener process
 
 Zap. Nauchn. Sem. POMI, 244 (1997),  302–314
- 
				Overlapping Series
 
 Avtomat. i Telemekh., 1996, no. 1,  171–174
- 
				Uniformly distributed hitting position for two-dimensional anisotropic diffusion process: the limit normed curve
 
 Zap. Nauchn. Sem. POMI, 228 (1996),  333–348
- 
				Random curvilinear integrals and their application
 
 Teor. Veroyatnost. i Primenen., 35:1 (1990),  118–130
- 
				Characteristic operator and curve integral for semi-Markov process
 
 Zap. Nauchn. Sem. LOMI, 177 (1989),  170–180
- 
				Statistics of the weighted Voronoi partition with the Poisson field of centers: Estimation of the volume content
 
 Zap. Nauchn. Sem. LOMI, 166 (1988),  167–178
- 
				A weighted tessellation of Voronoi with Poisson fields of centroids
 
 Zap. Nauchn. Sem. LOMI, 153 (1986),  160–172
- 
				Distribution of traversal time relative to sequences of states in a semi-Markov process
 
 Zap. Nauchn. Sem. LOMI, 142 (1985),  167–173
- 
				Representation of a semi-Marcov process as a time changed Markov process
 
 Teor. Veroyatnost. i Primenen., 28:4 (1983),  653–667
- 
				Transition functions of a continuous semi-Markov process on the line
 
 Zap. Nauchn. Sem. LOMI, 130 (1983),  190–205
- 
				Outleading sequences and continuous semi-Markov processes on the line.
 
 Zap. Nauchn. Sem. LOMI, 119 (1982),  230–236
- 
				A criterion of the Markov property for continuous semi-Markov processes
 
 Teor. Veroyatnost. i Primenen., 25:3 (1980),  535–548
- 
				Additive functionals and a time change which preserves the semi-Markov property of a process
 
 Zap. Nauchn. Sem. LOMI, 97 (1980),  203–216
- 
				Construction of a Markov, space homogeneous, non-death process from hitting distributions
 
 Zap. Nauchn. Sem. LOMI, 85 (1979),  207–224
- 
				Property of “correct exit” and one limit theorem for semi-Markov processes
 
 Zap. Nauchn. Sem. LOMI, 72 (1977),  186–201
- 
				On the convergence of semi-Markov walks to a continuous semi-Markov process
 
 Teor. Veroyatnost. i Primenen., 21:3 (1976),  497–511
- 
				On connection between random curves, changes of time and regenerative times of random processes
 
 Zap. Nauchn. Sem. LOMI, 55 (1976),  128–164
- 
				The random processes with semi-Markov chains of hitting times
 
 Zap. Nauchn. Sem. LOMI, 41 (1974),  139–164
- 
				On the set of the regeneration times of random processes
 
 Zap. Nauchn. Sem. LOMI, 41 (1974),  133–138
- 
				Point processes with a conditionally independent and uniform distribution of points on intervals
 
 Zap. Nauchn. Sem. LOMI, 29 (1972),  38–41
- 
				Random change of time, and continuous semi-Markov processes
 
 Zap. Nauchn. Sem. LOMI, 29 (1972),  30–37
- 
				Representation of a random process by first occurrence flows
 
 Dokl. Akad. Nauk SSSR, 196:2 (1971),  312–315
- 
				Time of the first departure from an interval for a continuous homogeneous random walk on a line
 
 Mat. Zametki, 9:6 (1971),  713–721
- 
				О номерах поколений в ветвящемся процессе с произвольным множеством типов частиц
 
 Teor. Veroyatnost. i Primenen., 14:3 (1969),  452–467
- 
				On numbers of particle generations for branching processes with overlapping generations
 
 Teor. Veroyatnost. i Primenen., 14:1 (1969),  44–50
- 
				Characterization of random functions by random inverse images
 
 Zap. Nauchn. Sem. LOMI, 12 (1969),  165–196
- 
				On properties of branching processes with an arbitrary set of types of particles
 
 Teor. Veroyatnost. i Primenen., 13:1 (1968),  82–95
- 
				On an algorithm for stochastic search for a maximum in a deterministic field
 
 Trudy Mat. Inst. Steklov., 79 (1965),  71–75
- 
				Efficiency of two-channel system  with reorganizations and guarantees
 
 Avtomat. i Telemekh.,  0
 
				
	
	
	
	© , 2025